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ABSTRACT 

A robust sliding mode control (SMC) algorithm is designed which 

is used to control a 2-link robotic arm. The controller is tested for 

various types of disturbances and model parametric uncertainties. 

The novelty of the work lies in the fact that the designed controller 

is capable of handling slow varying disturbances, fast varying as 

well as unpredictable disturbances. Simulation results validate the 

accurate tracking capability and robust performance. 
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  CHAPTER 1 

INTRODUCTION 

 
1.1 BACKGROUND 
 

A robotic Manipulator is a type of artificially created mechanical arm, 

which is programmed and tuned to function like a human arm and perform 

complex and iterative tasks quickly and efficiently. The arm may be a solo 

mechanism or may be part of a more complex robot. The links of such a 

manipulator are connected by actuating joints that allow either rotational 

motion (such as in an articulated robot) or translational (linear) 

displacement.  

Control of robot manipulators is still a challenging control systems design 

problem today due to its high nonlinearity and strongly coupled robot 

dynamics [1]. The task gets even more complicated when robotic 

manipulators are subjected to various unknown environments in the form 

of model uncertainties and unmeasurable external disturbances. 

Robotic Manipulators find applications in critical fields like surgery, 

nuclear containments, industrial assembly lines etc., welding, repairing 

pipelines on the ocean floor, remote servicing of utility power lines, 

industrial assembly lines in putting cars together, medical assistance to 

patients during infectious diseases and so accurate control of the robot arms 

has become an important requirement. So, the figure of merit defining the 

controller is robustness and the modern-day design demands optimal 

control with minimal effort or energy to achieve a particular work. The end 

effects of the manipulators are to track some desired trajectories as close 

as it is possible. So, trajectory-tracking problem is the most important and 

effective test to grade a controller design. A detailed study of various 
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strategies suggested in the literature for the design and implementation of 

robust controllers of robotic manipulators is mentioned in [2]. 

Ideally, the most common control systems design formulation is the 

systematic assignment of the poles of the system of a set of de coupled and 

linearized sub-system based on certain specifications. The essential 

requirements for such designs are that the system nonlinearities are 

neglected and the controller is acted upon with the most accurate 

dynamical model. Any deviation due to mismatching parameter or 

modelling structured and unstructured uncertainties will degrade the 

performance of the system and undermine the benefits of a controller. In 

most cases the uncertainty is considered to be limited by equations having 

higher order polynomials or approximated by some continuous functions. 

Various model based robust control techniques have been proposed in the 

available literature for synthesizing and designing controllers for robotic 

manipulators. Some notable controllers include algorithms based on 

Proportional-Integral-Derivative, Lyapunov-based theory, optimal control, 

fuzzy logic controllers, neural networks etc. 

Sliding Mode Control or SMC is a non-linear and robust control 

methodology. The SMC based controller is resistant to unknown 

uncertainties and parameter variations (if any), and do not ask for an 

accurate model of the manipulator, therefore an ideal choice for controlling 

the system of interest in this article. The SMC technique utilizes the theory 

of Variable Structure System (VSS) [33]. It involves driving an underlying 

state or the error dynamics of a state to be maintained at an attractive 

manifold, also called a sliding manifold due to which, the desired dynamic 

behavior of the system can be asymptotically ascertained. The proceeding 

for a sliding mode control action involves two phases, the reaching phase 

and the sliding phase [31]. The reaching phase tries to align the required 
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system state approach towards the sliding manifold while the sliding phase 

ensures the required dynamic behavior is achieved. During this sliding 

motion, the dynamics or properties of the system becomes invariant, thus 

making it less important to neutralize the system nonlinearities, which are 

otherwise required to be nullified if a conventional controller is used. The 

yielding dynamic motion of the states also becomes immune to certain 

parameter variations and external disturbances provided there are known 

bounds in those disturbances and variations [35]. However, the robustness 

characteristics of the conventional sliding mode control with respect to 

alterations of system parameters and external perturbations can only be 

ensured after the condition of sliding phase is achieved. During the 

reaching phase, there isn’t any guarantee for robustness [44]. An ideal 

control action from a sliding mode controller results in a discontinuous 

control action thus reflecting in a discontinuous actuator effort called 

chattering, which may demand high frequency switching actuators. The 

chattering phenomenon can be substantially mitigated by using a linear 

saturation boundary layer function in the SMC algorithm [42]. One more 

advantage of SMC is that we can obtain sliding mode motion for complex 

order systems even if the controller is obtained with reduced order and 

simpler modelling [45].  
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1.2 MOTIVATION 
 

The motivation behind this research is because of the challenges in 

controlling the robotic manipulator which are as follows –  

 

• Robotic manipulators are complex systems having high dynamic 
coupling. They are time-varying and inherently nonlinear systems. 

• The control effort which is torque at the joints are coupled. 
• The manipulators are usually subjected to both structured as well as 

unstructured parametric uncertainties which makes the precise and 
accurate position control a complicated task. 

• The end effects of the robotic manipulators are accurate tracking against 
a command which is the most important and significant task of a robotic 
manipulator. 

• The traditional control algorithms are inadequate under large scale 
uncertainty and have unprecedented variations in system parameters. 

• Obtaining a perfect and accurate mathematical model is a challenge and 
becomes difficult in case of greater number of links and joints in a 
complicated robotic arm. 

 

1.3 THESIS OBJECTIVE 
 

The main objectives of this research work are as follows 

 

1. Study of dynamical model of a two degree of freedom robotic 

manipulator. 

2. Integrate a sliding mode controller to this system based for trajectory 

tracking problem by choosing a sliding manifold based on the error 

dynamics and ensure that chattering is overcome. 

3. Test the system against various types of trajectory tracking problems 

keeping in account of the actuator efforts and smoothness of actuator 

efforts and against various types of disturbances and uncertainties acting 
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on the system. 

 

1.4 THESIS ORGANIZATION 
 

The organization of this research article is as follows. In Chapter 2, a 

literature survey is done on robotic manipulators, nonlinear control 

techniques, sliding Mode Controllers and disturbance and parametric 

uncertainties on manipulators. The mathematical formulations for the 

dynamics of a 2-link robotic arm is reviewed in Chapter 3. Chapter 4 

developes a Sliding mode control algorithm and its integration with the 

system. Chapter 5 highlights the methodologies for parametric 

uncertainties on robotic manipulators. In Chapter 6, the proceedings for 

simulations are provided followed by the results and discussions. Finally, 

Chapter 7 concludes the findings of this work and also mentions some 

future scope. 

  



 

                                                                                                                         Page 6 
 

 CHAPTER 2 

LITERATURE SURVEY 
 

This chapter presents a literature survey conducted in certain aspects 

that cover all the essential aspects of this project. The survey includes 

topics like the Robotic manipulators, their advent and development 

over time. The survey also shows comparison and analysis of various 

controller techniques, and how one outperforms the another and in 

which respect. Further, there is extensive survey on the Sliding Mode 

Controller. Lastly, we cover Uncertainty and Robustness aspects of 

the robotic manipulator and the controller. 

 
 

 

 

 

 

 

 

  

Controller 
Types 
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Literature 
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2.1 LITERATURE REVIEW ON ROBOTIC 

MANIPULATORS 
 
M. Vidyasagar in [1] provided the basic framework of dealing with 

physical systems like robotic manipulators. It highlights how physical 

systems with joints can be transcended into mathematical equations 

and how classical mechanics can be calibrated using controller 

designs. 

 

Abdallah C, Dawson D, Dorato P and Jamshidi M in [2] summarises 

the available literature on approaches to robust control of rigid robots. 

They are categorized into five major design approaches : linear-

multivariable approach, the passivity approach, the variable-structure 

approach, the saturation approach, and the robust-adaptive approach. 

Elisha D. Markus, Adisa A. Jimoh and John T. Agee in [3] describes 

the application technique of differential flatness for trajectory tracking 

of a robot manipulator in the presence of gravity and friction which 

otherwise increases the complexity in the coupled nonlinear dynamics 

of the manipulator. This method helps in obtaining ideal trajectories 

and resulting accurate trajectory tracking.  

Kaung Khant Ko Ko Han, Theingi and Aung Myo Thant Sin in [4] 

performs the dynamic and kinematic analysis of two link robot arm in 

a vertical movement. The derivation of the Newton-Euler method and 

Lagrange- Euler are also verified. Joint torques calculated in each time 

interval are plotted and actuated using a proposed (PID plus friction 

compensator) controller. The friction compensator is integrated with 

Coulomb friction, Static friction, Stribeck effect and Viscous friction. 
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B. Bona and M. Indri in [5] studies the performances of some linear 

and nonlinear observers by experimenting on the controllability of a 

SCARA two-link manipulator with multiple revolute joints. The 

analysis is carried out by using the observed velocities to implement a 

linear state feedback structure for the robot control. The results derived 

shows that different aspects (for example the required action, the 

knowledge of the robot dynamic model) may influence the selection 

of a given observer. 

S. Nicosia and P. Tomei in [6] have derived a dynamic output feedback 

controller for elastic joint robots where the only measurable quantities 

are link positions and the obtained controller is also able to track the 

trajectories having any arbitrary initial position. The controller 

consists of a non-linear observer which guarantees asymptotic stability 

for the error-dynamics. The Controller guarantees high degree of 

robustness with respect to parametric variations and its convergence is 

locally exponential. 

A. Green and J. Z. Sasiadek in [7] have found the solutions to 

operational problems with robot manipulators on structural flexibility 

and subsequent difficulties with their position control initially with the 

help of an LQR algorithm and fuzzy logic algorithms dictated by a 

Jacobian transpose control law. Secondly, a time delay provided does 

not result in a minimum phase system. Finally, a fuzzy logic system 

adapts the control law in response to elastic deformation inputs. 

Results obtained show higher trajectory tracking accuracy as 

compared to a rigid dynamic robot. 



 

                                                                                                                         Page 9 
 

F. Reyes and R. Kelly in [8] compares four model-based control 

structures with a direct-drive robotic manipulator. They obtain 

outcomes for the following controllers: Computed-Torque controller, 

Proportional Derivative + control, Proportional Derivative control 

with calculated feed forward and Proportional Derivative control. All 

controllers have considered friction compensation as well as 

cancellation of gravitational torques and have been evaluated with a 

performance index for trajectory tracking problems. 

M W Spong in [9] uses the Lyapunov-based theory of guaranteed 

stability of uncertain systems on a n-link robotic manipulator and 

derives a robust non-linear control law and proves that uniform 

ultimate boundedness of the tracking error depends only on the inertial 

parameters. The control law obtained does not require any previous 

assumptions regarding closeness in norm calculation of the calculated 

inertia matrix to the original inertial matrix. 

Chen WH, Gawthrop PJ, Ballance DJ and O’Reilly J. in [10] have 

developed a new nonlinear disturbance observer (NDO) whose 

exponential stability is guaranteed on the maximum velocity and the 

parameters of the robotic manipulators. The observer does not require 

any linearized model and its performance is verified using a 2-link 

robotic manipulator with friction estimation and compensation. 

M. Plooij, W. Wolfslag, and M. Wisse in [11] have considered a feed-

forward controller where the final position of motion is robust to any 

uncertainty in the friction model of the robotic manipulator using  rest-

to-rest motions of robotic arms. They have considered Viscous, 
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Coulomb and torque dependent friction on a single link robotic arm, 

of which analytical, simulation and hardware results were obtained. 

Sage HG, Ostertag E. and Mathelin MFD in [12] presents an overview 

of the textbook robust control structures for manipulator systems. This 

overview also includes mathematical references of actuator dynamics 

and joint flexibility. The different control structures are categorized as 

follows: linearized structures, passivity-oriented schemes, Lyapunov-

based structures, SMC schemes, non-linear H omega schemes and 

adaptive and control structures. 

Zhao D, Li S, Zhu Q, Gao F. in [13] have used finite-time Lyapunov 

stability principle and developed a new robust finite-time stability 

control approach for robotic manipulators and proved their design with 

backstepping method. For theoretical understanding, a corresponding 

stability analysis is presented to highlight the underlying design issues 

as well as safe operation of a two-link robot model. 

B.K. Rout and R.K. Mittal in [14] have optimised the parametric 

designs for a 2-link robotic manipulator. Different values of 

parameters are considered to get a wide overview of the optimization 

algorithm. ANOVA technique is used and the data for various 

parameters is used to analyse the statistical significance of kinematic 

and dynamic parameters on performance of manipulator using.  

2.2 LITERATURE REVIEW ON CONTROLLER 

TECHNIQUES 
Nasr A. Elkhateeb, Ragia I. Badr in [15] optimized a PID controller 

on the dynamic inertia weighing Artificial Bee Colony algorithm 
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(ABC) for a robotic manipulator. There is a coupled relationship 

between the actuator efforts and the position as well as acceleration of 

the robot arm. The designed algorithm optimizes the end effector for 

a  time dependent input and turns the controller robust enough to deal 

with external disturbance. 

J. P. P., J. P. Perez, A. Flores, J. L. Meza in [16] uses adaptive neural 

network for controlling a robotic manipulator. It is based on recurrent 

neural networks and Lyapunov functions methodology and 

Proportional-Integral-Derivative (PID) control for nonlinear systems. 

The control law is based on PID approach and controller structure is 

composed of a neural identifier. To verify the analytical results, an 

experiment of dynamical network is simulated and a theorem is 

proposed to ensure the tracking of the nonlinear system. 

Alvarez-Ramirez, Ilse & Kelly, Rafael and Jose & Cervantes in [17] 

obtains a Nobel PID controller based on modelling error 

compensation. It is proved that semiglobal PID stabilization and the 

Proportional Integrate Derivative control law stability is dependent on 

only the inertial parameters of the robotic manipulator. It is also 

proved that PID control with high gain limit can recover the 

performance of inverse dynamics control. The author presents a easy 

tuning guideline derived from the above mentioned PID control 

structure and stability of the closed-loop system. 

Stout WL, Sawan ME in [18] develops a H∞ controller for flexible 

joints of an industrial robotic manipulator. They have obtained two 

design methodologies i) mixed-H∞ design, and ii) H∞ design with 

loop shaping. Out of the two controller structures, one uses only the 
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actuator location, while the other utilizes the actuator location and end 

effector acceleration. So, the resulting controllers are compared to a 

standard controllers and choice of weighting functions are derived. 

They have also discussed model order reduction for controllers. 

Lin F and Brandt RD in [19] presents a new optimal control approach 

where uncertainties in terms of unknown loadings are overcome. They 

have designated performance indices and optimised with reference to 

those indices to achieve robust control. They have verified their 

proceedings using a two-joint SCARA type robot, by obtaining Robust 

control solution using Riccati equations. 

Ghorbel F, Hung JY and Spong MW in [20] have shown that if a 

correlation term is added to the control law and oscillations are 

damped out at the joints having weak joint elasticity, a singular 

perturbation argument can make the flexible joint robotic 

manipulators have adaptive capability and become insensitive to 

parametric uncertainty.  

A-V. Duka in [21] complex structural behaviour of fabric materials 

and geometric nuances in the robotic structures results in imprecise 

sewing of fabrics. To prevent such deviation from sewing trajectories, 

a neural network-based design for obtaining the positional error 

rectification of a 2-R manipulator is proposed. Geometrical errors of 

link longitudes on positional accuracy have been simulated and 

investigated. Performance of the proposed approach have thus been 

experimentally verified. 
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J. Wilson, R. Dubay and M. Charest in [22] have carried their research 

on three different nonlinear and model predictive algorithms which are 

adaptive and non-linear model predictive control (nMPC), 

Proportional Integrate Derivative based nMPC (PIDnMPC), and a 

novel simplified nMPC (SnMPC) and have simulated and verified 

them experimentally using a fabricated planar two link vertical robotic 

arm apparatus. Trajectory tracking, computational complexity and 

transient response dynamics are the aspects on which they have made 

these controllers compete with eachother. 

O. Djaneye-Boundjou and R. Ordóñez in [23] have revisited the 

design cycle for the Proportional-Integral-Derivative (PID) for torque 

control of robotic manipulators, when there is an increase in (DOF) 

and/or in the case of designing a Multi-Input Multi-Output (MIMO) 

PID controller. They have utilised a  stable Adaptive Particle Swarm 

Optimizer to tune the P-I-D gain matrices, based on a cost function 

considering various aggregated performance indices. 

F. L. Lewis in [24] have used a neural network controller various 

attributes of a robotic manipulator like for position control, force 

control, parallel-link mechanisms, and digital neural network control 

and has proved that his model independent controller is superior to 

adaptive controllers. 

R. Kelly in [25] proposed a controller using integral of a nonlinear 

function and feedbacking a linear proportional–derivative function. 

The author has described few regulator gains based on a class of some 

non-linear functions by using Lyapunov’s direct method and LaSalle’s 

to ensure global and asymptodic stability. 
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A. Zavala-Rio and V. Santibanez in [26] have carried their research on 

robotic manipulators having input saturations. They have provided 

alternate approaches which are simple extensions of the PD-with-

gravity-compensation (PDgc). Moreover, their algorithm has a better 

approach to a PDgc control signal compared to other algorithms of the 

same genre. 

C. Sun, W. He, H. Gao and Y. Yu in [27] based their dynamical model 

on assumed mode method. Artificial Neural Network control is used 

to track the desired trajectory accurately and get rid of vibrations (if 

any). The proceedings have been verified using Lyapunov 

formulations.  Simulation results show that the method is very 

effective compared to other available control formulations in the 

literature. 

C. Sun and J. Hong in [28] have mitigated vibrations on robotic 

manipulators and have based their control algorithm with Adaptive 

neural Networks. The system is modelled using lumped spring-mass 

approach and simulations are carried out. uniform ultimate 

boundedness of the closed-loop system is ensured so that the control 

algorithm is effective and output feedback control and full-state 

feedback control as well as are proposed individually. 

H. C. Nho and P. Meckl in [29] proposed a new control architecture 

based on a simple proportional derivative (PD) encapsulated with 

fuzzy-neuro logic. The objective is to make a robotic manipulator 

robust to variable payloads. The neural network is trained by 

estimating masses using fuzzy logic and the inverse dynamics of the 



 

                                                                                                                         Page 15 
 

plant is ascertained. Experimental results show that the developed 

control logic is superior to most conventional controllers. 

Yang Gao, Meng Joo Er and Song Yang in [30] have performed for 

multilink manipulators motion control using a neuro-fuzzy controller. 

The characteristic features of this controller are: (1) self-organizing 

fuzzy neural structure; (2) online learning of the robot dynamics; (3) 

fast convergence of tracking error; and (4) adaptive control. 

2.3 LITERATURE REVIEW ON SLIDING MODE 

CONTROL 

J. J. E. Slotine and S. S. Sastry in [31] obtained an algorithm of 

feedback-based control for obtaining perfect trajectory tracking in a 

class of non-linear, time-varying physical systems in the presence of 

external perturbations and parametric uncertainties. The algorithm 

uses integral continuous feedback-based control, resulting in the state 

trajectory to slide along a time-varying sliding manifold in the state 

space model of the system. This idealized control law has precise 

trajectory tracking; but there are some high frequency noise 

components in the state trajectory. To correct the high frequency 

components, it is followed that the continuous control algorithms may 

be used to approximate the otherwise discontinuous control law and 

derive perfect trajectory tracking within some accuracy bounds 

without generating undesirable high-frequency noise signals. The 

procedure is used to the control a two-link robotic manipulator 

handling variable and unknown weights in a flexible automated 

production system environment. 
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Bailey E, Arapostathis A. in [32] have proposed a simple and efficient 

sliding mode control structure to reduce the complexity of design for 

robot arms where the construction of individually stable discontinuous 

surfaces is not necessary. They have described the structure of the 

robotic arm dynamics and Lyapunov's second method of energy 

functions in order to establish a sliding surface directly on the 

intersection of the switching manifolds. 

K. S. Yeung and Y. P. Chen in [33] were the frontrunners to develop 

a controller algorithm for robotic manipulators using the concept of 

variable-structure systems (VSS) to handle the set-point angle 

regulation problem. The limitations of Variable Structure Systems 

control with coherent dynamic coupling is mitigated for a group of 

structures with positive symmetrical inertia matrices. Parametric 

Uncertainties are also taken care of in this designed method, which is 

then easily extendable to manipulators having higher number of links. 

The phenomenon of chattering in such algorithms are also solved by 

introducing sliding sectors. 

L. C. Fu and T. L. Liao in [34] integrated a controller taking in 

accounts of solely on the estimates of the unknown bounds on the 

parametric uncertainties and a Variable Structured Control (VSC) 

algorithm is obtained under the system structure refering 

consideration. It is derived that the outputs of the closed-loop system 

systematically follow given output commands irrespective of the 

uncertainties while the boundedness of all signals are maintained 

inside the loop. All the commands inside the loop are seen to be 

bounded for all time. To prove the superiority of the controller, the 
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controller is subjected to the case of a 2 degree-of-freedom (DOF) 

manipulator system considering various variable payloads. 

Chun-Yi Su and Tin-Pui Leung in [35] created a SMC structure 

considering an adaptive system, which is used to identify the unknown 

parametric bounds, for the command tracking control of a two degree 

of freedom robot manipulators. A SMC variable structure control 

algorithm with the parametric bound estimation is proposed. The 

major outcome of this control structure lies in the use of a 

characteristic matrix, called the regressor matrix, which makes it easy 

for segregating the unknown model properties from the robotic arm 

dynamics. Considering the upper bounds of such uncertainties which 

are projected by a easy adaptive scheme, the presented VSS controller 

ensured the system’s stability. The robustness formulation shows that 

in sight of the parametric uncertainties, which are assumed to be fast-

varying as well as unbounded, the closed-loop system can still be 

essentially controlled. Chattering is also mitigated by utilizing the 

boundary layer considerations. 

Yury Stepanenko, Yong Caos and Chun-yi su in [36] have selected an 

equation as a hyperplane in the system’s state-space model leading in 

a Proportional Derivative -type sliding surface. Two different types of 

the control structures are proposed: regular and adaptive. The first is 

very easy and can work with an uncertain dynamic model; the only 

info needed is a bound on one characteristic parameter. The latter 

results in an on-line estimation for this system bound. Both controllers 

are defend external disturbances and unmodelled dynamic effects. 
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C. -. Su and Y. Stepanenko in [37] have designed a controller 

algorithm based on a general form for a sliding surface. Two algorithm 

strategies for adaptive SMC are projected in this text for nonlinear 

robotic manipulators. It is derived that, without any beforehand info 

of the manipulator parameters, the controllers guarantee the existence 

of the sliding motion on the sliding surface, which can be a nonlinear 

as well as time-varying manifold. In the sliding mode, the desired 

closed loop performance can be obtained by selecting a suitable 

sliding manifold beforehand and an outline on selection has been 

proposed. 

Arie Levantin in [38] has synthesized a control structure that sticks a 

non-linear system to a given manifold and mantains it within this 

manifold even when constraints are considered. It follows that the shift 

of the system from its predetermined boundaries (sliding accuracy) is 

proportionally related to the switching time delay in the manifold. A 

whole new category of sliding modes and laws are presented and the 

idea of order of the sliding mode is also projected. They show a 

bounded control continuously variant on time, with few discrete 

values only in the control action’s derivative. It also follows that the 

sliding perfectness is empirically proportional to switching time 

delay’s square. 

G. Bartolini, E. Usai and A. Ferrara in [39] have presented a nobel 

result to the problem of chattering in systems with variable structure 

methodology. This solution is motivated by the original bang-bang 

optimally control theory, which is previously found and denoted in 

terms of a control structure by proposing a suitable auxiliary function 

considering a second-order unstable system with no velocity in its 
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states. Then the utilisation of the control structure is extrapolated 

through suitable changes, to the class of nonlinear systems with 

parametric nuances of more ideal types. The control structure does not 

need the use of observers bases and differential inequalities and can 

be easily utilized by exploiting the commercial ingredients as peak 

detectors or other simplified methods. 

M. Kemal Cihz and K. S. Narendra in [40] addresses the trajectory 

following control problem of two-link robotic systems with changing 

or unknown parameters. A new self-adaptive controller law is 

presented to correct the overall tracking index. This method uses a 

greater number of dynamic models of the plant in the control structure 

using an indirect adaptive controller. The energy input that is given to 

the joint motors is obtained at each and every instant using identifier 

model that best aligns with the manipulator dynamics. They also 

present the dynamical formulation of the control algorithm and the 

stability norms of the complete plant. 

Kou-Cheng Hsu, Wei-Yen Wang and Ping-Zong Lin in [41] have 

obtained a new approach for a category of non-linear and uncertain 

systems having multiple inputs containing sector nonlinearities and 

dead zone non linearities. A SMC scheme is laid to obtain stabilizing 

laws for such uncertain nonlinear structures which ensure a global 

reaching requirement. They can also work in the systems without any 

external non-linearities at all. Moreover, they also ensure that the 

trajectories are asymptotically convergent on the sliding surface by 

using few illustrative examples to verify their claims. 
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M. Hamerlain, T. Youssef and M. Belhocine in [42] have carried out 

their research on chattering in sliding mode control which occurs due 

to discontinuous control structure. They have considered a normalized 

sliding-mode actuation that sways on the derivative of defining law 

instead of the actuator input itself thus decreasing chattering. They 

have verified their proceedings on a SCARA type manipulator arm 

with three degrees of freedom for a trajectory tracking case and 

concluded that the controller is essentially robust. Experimental 

findings show that their results are superior in terms of mitigating 

chattering. 

Yuzheng Guo and Peng-Yung Woo in [43] have presented a corrective 

fuzzy SMC control structure for manipulator systems. A SISO and 

adaptive fuzzy system is used to calculate the control gain vector in a 

SMC control structure and it is synthesized using Lyapunov 

formulations. They have also mathematically proved its stability and 

its asymptotic convergence for set-point control and trajectory 

tracking. Their results show that there is substantially low chattering 

and the steady state errors are enormously mitigated and works better 

than the general form of sliding mode control. 

J. Shi, H. Liu, and N. Bajcina in [44] proposes a simple controller 

having pole placement capability that uses computed-torque-like 

structure based on integral sliding mode. The obtained sliding mode 

controller is integrated with a disturbance estimator for reducing 

chattering using a semi-continuous rectifying action given by using an 

extra low-pass filter. The time constant of the estimator aligns the 

controller in between reduction in chattering and system robustness. 
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A comparative study is also presented against the existing literature to 

show its superiority. 

S. Islam and X. P. Liu in [45] have proposed a multi valued 

model/control-dependent SMC method which is proposed to mitigate 

the level of uncertainties and decrease observer-based controller gains. 

They have split parameters of compact set into a lower number of 

smaller and simple subsets and a potential SMC related to each of 

these subsets is designed. To identify a candidate model, the derivative 

of the Lyapunov function is used as a resetting criterion which 

approximates the plant closely at each and every instant of time. The 

parameter calculation of traditional adaptive SMC law is reset into a 

model that is best in obtaining the system among a finite set of 

potential models which is then applied on a two degree of freedom 

robotic manipulator and its claims of better performance are verified. 

Ouyang, Puren & Yue, Wen & Pano, Vangjel have in [46] utilised the 

advantages and the ease of ideal PD control and the high tracking 

performance of SMC and created a new hybrid PD-SMC strategy for 

trajectory tracking control of nonlinear robotic manipulators. The 

characteristic features of the proposed scheme are a model-free 

nonlinear feedback control and its globally asymptotical stability 

which are verified through numerical simulations under different 

operating conditions or tasks. 

2.4 LITERATURE REVIEW ON ROBUSTNESS AND 

UNCERTAINTY 
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In [47] have projected a UDE (meaning uncertainness and perturbation 

Estimation) based controller for trajectory following problem. Non-

linearities, external perturbation and system parametric uncertainties 

are nullified using the UDE and a FL (Feedback Linearization) based 

controller is integrated for trajectory tracking and it is realized by the 

UDE-estimated discrepancies to obtain robustness. An observer that 

considered the UDE-estimated uncertainties for robustness was 

highlighted because the resulting controller required joint velocities as 

well as joint positions, giving allowance to the UDE-based controller–

observer system. The characteristic of this implementation is that it do 

not require any exact plant model. Lastly, the proposed design is 

verified using Quanser’s single-link flexible joint module. 

In [48] proposes a nobel approach to make a robust input–output 

linearization controller which is obtainded by calculating the 

unmeasurable nuances and external perturbations using a new 

uncertainty and perturbation estimator. A major highlight of the 

presented approach is that it does not need any knowledge about the 

nuances. The stability of the plant and the estimator is established.  

J. E. Slotine and Li Weiping in [49] summarises the basic algorithms of 

adaptive controller for trajectory tracking problems of robotic 

manipulators. They assumed unknown dynamic parameters of the 

robotic manipulators and estimated that within a fraction of a second 

of a typical run, the system trajectory can be accurately and precisely 

controlled. The outcomes show that the level of robustness enjoys the 

same as unmodeled dynamics in a Proportional Derivative controller 

yet trajectory tracking properties are much better. Their approach is 

demonstrated on a high-speed 2 DOF quasi-direct-drive robot. 
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Zhong QC, Rees D In [50] have proposed a control strategy for 

uncertain Linear Time Invariant  Systems dependent on an uncertainty 

and perturbation estimator (UDE).The performance-index is identical 

to time based delay control (TDC) but has advantages of no having 

any delay in the system, no unstability in the control signal and there 

is no need to measure the derivatives of the state vector. Then, the 

robust stability of LTI SISO systems is analysed, using simulation runs 

to show the usefullness of the UDE-based control as a comparison to 

TDC. 

R. Sharma and M. Gopal in [51] have used Markov game formulation 

to create an adaptive fuzzy controller for robot manipulators. Bounded 

external disturbances and unknown parameter variations are very 

easily handled by The Markov game framework and makes it a robust 

controller. The authors have proposed fuzzy Markov games for 

adapting the FQL (fuzzy Q-learning) to a continuous-driven form of 

Markov based game theory using a controlling signal to adjust the end 

part of a fuzzy Markov game control structure online. The Markov 

game-adaptive fuzzy controller uses a simple fuzzy inference system 

(FIS) which is calculated to be efficient and obtains a quick control 

that does not require exact dynamics of the robotic system. The 

superiority of the proposed controller is compared against all the 

leading control methodologies in literature and applied on a 2-DOF 

SCARA robot manipulator and it turns out to outperform all other 

controllers in respect of neutralizing errors and control energy 

specifications over different ideal trajectories.   
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CHAPTER 3 

MATHEMATICAL MODELLING OF A          

2-LINK ROBOTIC MANIPULATOR 

3.1 KINEMATIC ANALYSIS OF TWO-LINK 

ROBOTIC MANIPULATOR 

3.1.1 FORWARD KINEMATICS 

Kinematics refers to the end-effector position after execution of a 

movement in terms of joint angles and the geometry of the links and 

the process of transcending to this outcome is known as forward 

kinematics. A limb which is mechanical device, converts arm muscle 

length magnitudes and the angles of the joints to the positions of the 

hand. In Fig. 3.1, an illustration of the movement of the robotic 

manipulator in vertical direction is presented. 

 

Fig 3.1 Illustration of robotic arm for forward kinematics  
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The arm is modelled in two solid links of length and , the links 

turnabout horizontal and parallel axes which are fixed to the links. So, 

the forward kinematics from joint angles  to position of the 

hands  is given by 

       (3.1) 

                      (3.2) 

3.1.2 INVERSE KINEMATICS 

The transformation of the joint angles and muscle lengths from the 

respective desired hand position is termed as inverse kinematic 

transformation.  

 

Fig 3.2 Illustration of robotic arm for inverse kinematics 

  

l1 l2

(θ1,θ2 )

(x, y)

x = l1 cos(θ1)+ l2 cos(θ1 +θ2 )

y = l1 sin(θ1)+ l2 sin(θ1 +θ2 )
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So, mathematically the inverse kinematic translation for the 

generalized two link robotic manipulator from position  to 

angles  is given by 

   

 (3.3) 

The inverse dynamic can be implemented as an algorithm as follows 

      

       

        (3.4) 

              (3.5) 

                               (3.6) 

                                        (3.7) 

 

 

 

(x, y)

(θ1,θ2 )

x2 + y2 = l1
2 cos2(θ1)+ l2

2 cos2(θ1 +θ2 )+ 2l1l2 cos(θ1 +θ2 )+

l1
2 sin2(θ1)+ l2

2 sin2(θ1 +θ2 )+ 2l1l2 sin(θ1)sin(θ1 +θ2 )

θ2 = a tan2(sin(θ2 ),cos(θ2 ))

= a tan2(± 1− cos2(θ2 ),cos(θ2 ))

= a tan2(± 1− (
x2 + y2 − l1

2 − l2
2

2l1l2
),
x2 + y2 − l1

2 − l2
2

2l1l2

θ1 = a tan2( y,x)− a tan2(k2 ,k1)

k1 = l1 + l2 cos(θ2 )

k2 = l2 sin(θ2 )
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3.2 DYNAMIC ANALYSIS OF TWO-LINKROBOTIC 

MANIPULATOR 

3.2.1 INTRODUCTION TO LAGRANGIAN FORMULATION 

Lagrangian formulation is a reformulation of classical mechanics where the 

trajectory of a system of particles is obtained with equating the Lagrange 

equations where the system constraints are given special priority and are 

treated as separate equations, either by suing Lagrangian multipliers or by 

incorporating the constraints explicitly by appropriate choice of generalized 

coordinates. The system dynamics information is contained in functions 

called as Lagrangian function which is a form of the normalized co-

ordinates with their corresponding time differentials. 

The formulation is mathematically systematic although sophisticated. 

Application of Lagrangian formulation is ideal for mechanical systems 

where there are conservative forces and for neutralizing system constraint 

forces in any dimension whereas the actuated forces are considered by 

separating the driving forces to a sum of potential and kinetic forces, 

resulting in a class of improved Euler-Lagrangian representations. The 

idealized frames can be picked according to ease, to befit the symmetries in 

the structure or the geometry of the constraints, which may ease solving for 

the equation of motion of the system. The Lagrangian formulation is most 

popularly utilized to solve for problems in physics and when Newton's 

classical theory is not very much applicable. Lagrangian formulation is 

bestowed to the dynamics of particles, while fields are defined using a 

characteristic density function. Lagrange's methods also find application in 

optimization problems of dynamical structures.  
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Let us consider systems where there are only conservative forces. 

Such forces are obtained from a potential energy function 

 by differentiation as follows: 

            (3.8) 

Systems where the forces are purely conservative always conserve 

the total energy as such 

                                 (3.9) 

Where K represents the Kinetic Energy and U represents the 

Potential Energy. 

           (3.10) 

Differentiating the energy with respect to time: 

                        (3.11) 

             (3.12) 

U (r1,r2...rn )

Fi = − ∂U
∂ri

E = K +U

E = 1
2

mi !r
2
i +U (r1,r2 ,...rn )

i=1

N

∑

dE
dt

= mi !ri .ri
i=1

N

∑ + ∂U
∂rii=1

N

∑ .ri

= Fi × !ri −
∂U
∂rii=1

N

∑ .!ri
i=1

N

∑

⇒ dE
dt

= O
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Here, the law of conservation of energy is ensured where   

(from Newtons Law of motion) and  (from definition of 

conservative force) 

Thus, for conservative systems, we can transcend the above 

formulations into an elegant form of classical mechanics called as 

Lagrangian formulation. The Lagrangian function, L, for a system is 

described as the differential in energy between the kinetic and 

potential energy expressed as a function of positions and velocities. 

We can formulate it in an algorithm as 

             (3.13) 

           (3.14) 

The classical equations of motion are then given by the Euler-

Lagrangian formulation as 

            (3.15) 

The solution of the equations of motion for a given initial condition is 

known as a trajectory of the system.  

  

ri =
Fi
mi

Fi = − ∂U
∂ri

L(r, !r) = K −U

L = 1
2
mi !r

2
i

i=1

N

∑ −U (r1,r2 ,...rn )

d
dt
(∂L
∂ri
)− ∂L

∂ri
= 0
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3.2.2 DYNAMICS OF A TWO-LINK ROBOTIC 

MANIPULATOR USING EULER-LAGRANGIAN 

EQUATIONS 

The equations of motion of a two-link robotic manipulator, shown in 

Fig. 3.3, is derived with the help of Euler–Lagrangian formalism as 

follows. 

 

Fig. 3.3. Schematic diagram of a two-link robotic arm 

L = Kinetic Energy – Potential Energy where L is the Lagrangian 

Formulation 

            (3.16) 

Here, Kinetic Energy, K.E =  

fθ1,2 =
d
dt[

∂L
∂ !θ1,2

]− ∂L
∂θ1,2

1
2((m1+m2)l1

2 !θ12+m2l22( !θ21+ !θ22))



 

                                                                                                                         Page 31 
 

               (3.17) 

Potential energy,  

P.E =        (3.18) 

                         (3.19) 

Solving the above equation, the equation of motion of the two-link 

robotic arm can be generalized as 

           (3.20) 

Where is the inertia matrix,  is the centripetal and Coriolis 

torque matrix, is the gravity torque matrix and  is the input 

torque vector. The various matrices are as follows 

  

 

 

+m2l2 !θ1(l2 !θ2+ l1cos(θ2))( !θ1+ !θ2)

g(m1l1sin(θ1)+m2(l1sin(θ1)+ l2sin(θ1+θ2)))

L= KE− PE

M(θ)!!θ +C(θ) !θ +G(θ)g =τ in

M (θ ) C(θ )

G(θ )

M(θ)=
(m1+m2)l12+2l1l2m2cos(θ2) m2l1l2cos(θ2)
m2l1l2cos(θ2)+m2l22 m2l22

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

!!θ =
!!θ1
!!θ2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

C(θ)=
−m2l1l2sin(θ2) !θ2 −m2l1l2sin(θ2)( !θ1+ !θ2)
m2l1l2sin(θ2) !θ1 0

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
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!θ =
!θ1
!θ2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

G(θ)=
(m1+m2)l1cos(θ1)+m2l2cos(θ1+θ2)

m2l2cos(θ1+θ2)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

τ in =
τ1
τ2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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CHAPTER 4 

SLIDING MODE CONTROL 

 

4.1 INTRODUCTION TO VSCS AND SLIDING 

MODE CONTROL 

The advent of Variable Structure Control Systems (VSCS) is credited 

to Emel’yanov and Barbashin of Russia in the early nineteenth century 

and ever since have been adopted from 1970s when a formal 

translation of this new control scheme was published in English. 

VSCS finds their application in robust regulators, model-reference 

adaptive systems, trajectory tracking systems, observer-based control 

structures and fault detecting schemes. The applications of VSCS have 

range from chemical processes to robotics, automatic flight controls, 

helicopter stability, space systems and much more. Sliding mode 

control is derived from VSCS and consists of isolated structures of 

characteristic properties calibrated by a switching logic. The system is 

said to be on the Sliding Phase when it reaches such defined structure. 

A surface  is traded attractive when trajectories starting in 

such surface, continue in it or others starting outside redirect to it. 

There occurs a discrete nature of the system trajectory when the state 

sways on either way in trying to align with the sliding surface. By 

definition, sliding mode control (SMC) is a supreme control algorithm 

which is inherently immune to system nuances either in the form of 

perturbations acting on the system or non-idealities within the system 

itself.    

s(x) = 0
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SMC is also considered as the first practical way out whenever there 

is a doubt about the accurate system dynamics. An inherently robust 

controller, SMC overcomes all bias within a simple control algorithm. 

 

4.2 ILLUSTRATION OF SMC USING A DOUBLE 

INTEGRATOR 
 

For the purpose of illustration consider the double integrator given by 

     (4.1) 

Consider a feedback control law, 

    (4.2) 

where k is a strictly positive scalar. 

The way of analysing the resulting closed-loop motion is by means of 

a phase portrait, which is a plot of velocity vs position. 

Substituting equation (4.2) in (4.1), and integrating we obtain, 

     (4.3) 

Where c is the constant of integration which is strictly positive and a 

function of the initial conditions of the system. 

More generally, a plot of  against  represents an ellipse whose 

characteristics depends on the initial conditions as shown in Figure 

4.1. But the control law as defined in (4.2) is not appropriate because 

x!!(t) = u(t)

u(t) = −kx(t)

!!x2 + x2 = c

!x x
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as shown in Figure 4.1, and  do not tend to the origin as time tends 

to infinity. 

Figure 4.1: Phase portraits of Double Integrator 

Consider a control law otherwise as, 

   (4.4) 

Where  . The phase plane is partitioned by four 

quadrants separated by axes as shown in Figure 1.1. The control law 

 will be in effect for the phase plane in quadrant (a). In 

this region the distance of the points from the origin in the phase 

portrait decreases along the system trajectory. Similarly, in quadrant 

(b), when the control law is  , the distance from the 

origin of the points in the phase portrait also decreases. The final phase 

portrait for the double integrator system is obtained by stitching 

together the respective regions from the two-phase portraits as shown 

in Figure 1.1. So, the resulting phase portrait is a spiral that narrows 

down towards the origin as shown in Figure 4.2. 

!x x

u(t) =
−k1x(t),→ if x(t) !x(t) < 0

k2x(t)→ otherwise

⎧
⎨
⎪

⎩⎪

0 < k1 <1< k2

u(t) = k2x(t)

u(t) = −k1x(t)
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Figure 4.2: Phase portrait of system under VSCS 

To verify the clauses of stability for this control action, we consider a 

energy function, 

   (4.5) 

Which is otherwise the square of distance from the point ( ) 

to the origin in the phase plane. The time derivative of  

of this closed loop system is given by, 

                                     (4.6) 

                                          

         

V ( !x(t), x(t)) = !x2 (t) + x2 (t)

!x(t),x(t)

V ( !x(t),x(t))

!V ( !x(t),x(t)) = 2 !x(t)x(t)+ 2!!x(t) !x(t)

= 2 !x(t)(x(t)+ u(t))

= 2x(t) !x(t)(1− k1)→ if !x(t)x(t) < 0

= 2x(t) !x(t)(1− k2 )→ if !x(t)x(t) > 0
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This is always made negative by tweaking the gain constants. Thus, 

the distance from the origin is always decreasing, which is the sole 

purpose of this control law. So, we introduce a rule for switching 

between the two control structures, which independently do not 

provide stability but provides a stable closed loop system. 

4.3 CONTROL SCHEME FOR SMC 
 

Consider a non-linear dynamical system described by  

                                   (4.7) 

Where   is an n-dimensional state vector and  is a 

m-directional state feedback based input vector. A and B are functions 

 and  are considered to be 

continuous functions and stable enough so that the Picard-Lindelof 

condition can ensure that a solution exists for the system and is 

singular. 

The purpose of the feedback control law  is to bring the states 

of the system around the equilibrium point which is the origin. That is 

whatever deviation occurs in the states, the control law must ensure 

that the states are returned to the origin after the deviation. In SMC, 

the designer must ensure that the system behaves perfectly i.e. the 

system has a unique equilibrium considering that is limited to a 

subspace of its own configuration space. SMC controller ensures that 

the system trajectory is returned back to the subspace and is hold along 

that subspace so that the trajectories slide on it. The reduced order 

subspace is termed as the sliding manifold in the literature, and when 

!x(t) = Ax(t)+ Bu(t)

x(t)∈Rn u(t)∈Rm

A : RnxR→ Rn B : RnxR→ Rn×m

u(x(t))
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the control law dictates trajectories to slid on it, it is directed to a 

sliding mode of system. Trajectories in line with this subspace is 

viewed as the eigen vectors of a Linear Time Invariant or LTI systems. 

Also, the sliding mode is associated with creation of a vector field with 

high-gain feedback. As an analogy we can think of a marble rolling 

along a groove where the groove is the sliding manifold and the mass 

of the marble or inertia is the gain of the SMC controller. 

So, essentially SMC scheme includes: 

1. Describing a reduced order structure such that the system 

undergoes the most favourable behaviour when the states of the 

system sticks to that manifold. 

2. Obtaining feedback gains such that the states get attracted to the 

manifold and sticks to it. 

The sliding mode design needs a switching function  :  

that represents the distance of the state  from the desired trajectory. 

• A state is on the sliding surface if   

• A state is not on the sliding surface if   

The SMC law takes into account of the sign of this distance and 

accordingly pushes or pulls in the line of the sliding surface where 

 . Suitable states will lead towards the sliding surface and 

since the control is discontinuous, the surface is established in finite 

time. When a state reaches the desired surface, it will creep on it and 

may move towards the origin where  and  both are zero. So, 

ψ Rn → Rm

x

ψ (x(t)) = 0

ψ (x(t)) ≠ 0

ψ (x) = 0

!x(t) x(t)
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the switching function  is like a contour map with a topography of 

constant width for trajectories to be forced upon. 

The sliding manifold or the sliding surface is of dimension n x m 

where n is the number of states in  and m is the number of input 

signals in  . For each index of control  , there is a n x1 

sliding surface which is described by 

                                                                   (4.8) 

To force the system states, satisfy , one must: 

• Ensure the reachability of the system  from any 

initial condition 

• When the reachability is ensured, the system is capable of 

keeping it at   

  

ψ

x(t)

u(t) 1≤ k ≤ m

{x(t)∈Rn :ψ k (x(t)) = 0}

ψ (x(t)) = 0

ψ (x(t)) = 0

ψ (x(t)) = 0
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4.4 THEORITICAL FOUNDATION OF SMC 

THEOREM 1: The existence of the Sliding Mode 

A candidate Lyapunov function checks the credibility of existence of 

sliding mode. 

  

                                                     

                 (4.9) 

Where  is the Euclidean norm which is the distance from the sliding 

manifold where  . For the system described by (4.7) and 

sliding surface defined by (4.8), the sufficient condition for the 

existence of sliding mode is that  

                                                       (4.10) 

In a neighbourhood of the surface given by . 

In other words, the control law is picked so that  and 

  have signs opposite to eachother because  has a 

direct impact on . That is,  

•   makes  negative when  is positive. 

V (ψ (x(t))) = 1
2
ψ T (x(t))ψ (x(t))

= 1
2
ψ (x(t))

2

2

.

ψ (x(t)) = 0

ψ T (x(t)) !ψ (x(t)) < 0

ψ (x(t)) = 0

ψ (x(t))

!ψ (x(t)) u(x(t))

ψ (x(t))

!ψ (x(t)) ψ (x(t))
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•   makes positive when  is negative. 

Reachability: The sliding manifold is achieved in finite time 

To ensure Reachability in finite time, must have less affinity for the 

origin that is if it does not vanish very easily, the resolution towards 

the sliding mode will not just be asymptotic but full proof. To make 

sure that  

                                        (4.11) 

Where  and  are constants. 

The statement ensures that for the neighbourhood of the sliding mode 

 

           (4.12) 

So, for      

            (4.13) 

which, by chai rule (i.e.  with  ), means 

(4.14) 

!ψ (x(t)) ψ (x(t))

!V (ψ (x(t))) ≤ −µ(V (ψ (x(t))))α

µ > 0 0 <α ≤1

V (ψ (x(t)))∈[0,1]

!V (ψ (x(t)))) ≤ −µ(V (ψ (x(t))))α ≤ −µ V (ψ (x(t)))

V (ψ (x(t)))∈(0,1]

1
V (ψ (x(t)))

!V (ψ (x(t))) ≤ −µ

dW
dt

W ! 2 V (ψ (x(t)))

D+ (2 V (ψ (x(t)))) = 1
V (ψ (x(t)))

!V (ψ (x(t))) ≤ −µ
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Where  is the upper right hand derivative of  

and the symbol  represents proportionally. So by comparing to 

the curve  with initial condition  , it is the case 

that  for all time. 

Also because  ,  must reach 

 in finite time . Because is 

directly proportional to the Euclidean norm of alternating function 

 , this result shows that the rate of approach to the sliding 

mode must be strictly divergent. 

For the case, when switching function  is scalar valued, 

the essential condition happens to be 

            (4.15) 

Considering , (4.15) reduces to 

                  (4.16) 

That is    and 

                                                                       (4.17) 

 

D+ 2 V (ψ (x(t)))

α

!z = −µ z(0) = z0

2 V (ψ (x(t))) ≤V0 − µt

V (ψ (x(t))) > 0 V (ψ (x(t)))

V (ψ (x(t))) = 0 V (ψ (x(t)))

ψ (x(t))

ψ (x(t))

ψ (x(t)) !ψ (x(t)) ≤ µψ (x(t))
α

α = 1

ψ (x(t)) !ψ (x(t)) ≤ µψ (x(t))

sgn(ψ (x(t))) ≠ sgn( !ψ (x(t)))

!ψ (x(t)) > µ > 0
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Meaning the system should always drift towards the switching 

surface  and its speed  of moving towards 

the switching surface should have a lower bound which is non-

zero. To make sure that, sliding mode controllers are not 

continuous around the  , they switch their states 

from one the states pass through the manifold. 

THEOREM 2: The Region of Attraction 

The subspace for which the surfaces given in (1.8) is reachable is 

described by  

                       (4.18) 

Meaning that when the initial conditions come entirely from this 

space, the Lyapunov candidate function  and states  

are bound to get attracted to the sliding surface where  . 

Moreover, if the reachability conditions from Theorem 1 are already 

satisfied, the system will enter the region where  is 

definitely away from zero in some finite time. Hence the sliding mode 

will be attracted in finite time. 

 

THEOREM 3: The Sliding Motion 

  be non-singular. So, we can ascertain that the 

controllability of a system is ensured meaning, the states will slide 

ψ (x(t)) = 0 !ψ (x(t)))

ψ (x(t))) = 0

{x(t)∈Rn :ψ (x(t)) !ψ (x(t)) < 0}

V (ψ (x(t))) x(t)

ψ (x(t)) = 0

!V (ψ (x(t)))

dψ (x)
dx

B(x(t),u(t))
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towards the sliding manifold. Then, once the sliding surface at 

 where is obtained, the system will be put on that sliding 

manifold. Along that sliding manifold  is constant, we can 

put that 

                                  (4.19) 

If the state  is stable with respect to the differential equation in 

(4.19), then the state will slide along this sliding surface towards its 

equilibrium. 

Hence the control law is designated as  

                            (4.20) 

For the equivalent control law  .  

So,                (4.21) 

And so, the equivalent control law becomes 

               (4.22) 

Meaning the actual control law  may not be continuous but 

the quick switching action around the sliding manifold creates an 

impression that the system is acted upon by a continuous control. 

So, the system dynamics can be written as 

ψ (x) = 0

!ψ (x) = 0

!ψ (x) = 0

x(t)

!ψ (x(t)) = 0

u(x(t))

dψ (x)
dx

(Ax(t)+ Bu(t)) = 0

u(t) = − ∂ψ (x)B
∂x

⎛
⎝⎜

⎞
⎠⎟

−1
∂ψ (x)
∂x

A

u(x(t))
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                  (4.23) 

                            (4.24) 

The resulting system comes in line with the sliding manifold 

differential equation as in (4.20) and the system trajectory equation 

reduce to the above equation (4.23) when coming from the reaching 

phase. Hence when the system comes down to the sliding manifold, it 

can be assumed to follow simpler conditions as given in (4.20). The 

same motion is approximately maintained when  holds 

true. 

The inferences that follow from these theorems is that the sliding 

motion is insensitive to uncertainties and disturbances that are acting 

on the system. Also as long as the control effort is significant enough 

to ensure  and  is uniformly bounded 

away from zero, the system will be maintained on the sliding surface 

as if there is no disturbance. The invariance characteristics of this 

controller make it essentially robust. 

  

!x(t) = A− B ∂ψ (x)B
∂x

⎛
⎝⎜

⎞
⎠⎟

−1
∂ψ (x)
∂x

A

A(I − B ∂ψ (x)B
∂x

⎛
⎝⎜

⎞
⎠⎟

−1
∂ψ (x)
∂x

)

ψ (x(t)) = 0

ψ T (x(t)) !ψ (x(t)) < 0 !ψ (x(t))
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4.5 SMC CONTROL ON THE ROBOTIC 

MANIPULATOR 

For a single link, let  be the desired or reference arm angle and  

be the actual arm angle at any particular instant. The error is defined 

as 

                                                      (4.25) 

Let a sliding surface be considered as 

                                                      (4.26) 

whose time response is an exponentially decaying function as shown 

in Fig. 4.4 with time constant  driving the error asymptotically to 

0 as  , whenever  .  

Now, we define a control effort,  

                                                         (4.27) 

Where                                    (4.28) 

which will actuate the system whenever  . 

The SMC design proceeding can be defined as creating a controller 

that makes sure the stabilization of s at 0 is obtained irrespective of 

θd θ

e=θd −θ

s= !e+λe

λ −1

t→∞ s= 0

usw = −sgn(s)

sgn(s)=
−1,s<0
0,s=0
1,s>0

s≠0
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any deviation in the dynamic model of the plant, and ensures that the 

state (here error) obeys the surface  (as shown in Fig. 4.3) 

For both the links, the error and the control effort can be generalized 

as vectors and   respectively and each 

error term is dictated with some sliding surface as described by Eq. 

(4.26). Accordingly, we can have two unique values of  . 

 

Fig. 4.3. Phase portrait of sliding         Fig. 4.4 Error dynamics surface                                          

for   

From (robot dynamics) 

                           (4.29) 

                         (4.30) 

where 

                  (4.31) 

s=0

e= e1⎡
⎣⎢ e2

⎤
⎦⎥
T

usw = usw1usw2 ⎤⎦⎥
T⎡

⎣
⎢
⎢

λ

!x

x
s > 0

s < 0 s = 0
t

e

s=0

!!θ = −M (θ)−1(C( !θ ,θ)+G(θ))+M (θ)−1τ in

!!θ = f (θ)+u

f (θ)=−M(θ)−1(C( !θ,θ)+G(θ))
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                   (4.32) 

                    (4.33) 

From Eq. (4.26), putting , we have 

                                                                (4.34) 

                                                     (4.35) 

From (4.25) and (4.35) 

                                              (4.36) 

From (4.30) and (4.36) 

                                    (4.37) 

Where  is the nominal control effort which can be represented as a 

vector . 

Now, we have two control efforts that are actuating the system, one 

obtained from Eq. (4.37) which confirms the nominal dynamic 

equilibrium of the states of the system(here the state of interest being 

error) and the other, obtained from Eq. (4.27) which maintains the 

system at the required dynamic equilibrium whenever the states of the 

system (here the state of interest being error) gets deviated on account 

u=M(θ)−1τ in

τ in=M(θ)u

s=0

!e+λe=0

!!e+λ !e=0

!!θd − !!θ +λ !e=0

un = − f (θ )+ !!θd +λ !e

un

un = un1un2 ⎤⎦⎥
⎡
⎣⎢

T
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of any disturbances, uncertainties, unmodelled parameters and 

arbitrary initial conditions of the states. 

So, the actuator effort can be described as a sum of two torques 

                                        (4.38) 

Where 

             (4.39) 

is obtained from Eq. (4.33) and Eq. (4.39) represents the nominal 

torque and 

                      (4.40) 

which is obtained from Eq. (4.27) represents the discontinuous or 

corrective torque that provides for any shift from the switching 

surface. 

Both  and  are vectors represented by  and 

 respectively. 

Here is a diagonal controller discontinuous gain matrix.  

τ =τn+τs

τn =M(θ)u

τ s =−K sgn(s)

τ n τ s τn = τn1τn2 ⎤⎦⎥
⎡

⎣
⎢

T

τ s = τ s1τ s2 ⎤⎦⎥
⎡

⎣
⎢

T

K
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4.6 CHATTERING IN SMC 

The control law however has an undesirable phenomenon called 

chattering (as shown in Fig. 4.5), where momentum of the states or a 

minute uncertainty drives the sliding surface away from 0. These 

deviations are further intensified by the gain K in the control law 

which might lead to significant fluctuations in the controller command 

and hence the actuator outputs. To circumvent or come around 

chattering, the discontinuity of the SMC control law is smoothened (as 

shown in Fig. 4.6) out by bringing a boundary layer around the sliding 

surface within which the deviations from the sliding surface   is 

ignored. Mathematically, 

                  (4.41) 

Where                  (4.42) 

 

usb =−K × sat(s)

sat(s)=

−1, sφ >1

0, −1< sφ <1

+1 ,sφ <−1
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Fig. 4.5. Chattering in SMC                        Fig. 4.6. SMC with boundary layer 
 

The thickness or width of this boundary layer is denoted by . 

  

!x

x
s > 0

s < 0 s = 0
t

e
!x

x
s > 0

s < 0 s = 0
t

e

φ

φ
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CHAPTER 5 

PARAMETRIC UNCERTAINTIES AND 

DISTURBANCES IN ROBOTIC 

MANIPULATORS 

Robotic manipulators are always acted upon unpredictable dynamics 

say in the form of unpredictable gravitational torques, unmodelled 

friction torques, external disturbances, and inertia. Those uncertainties 

are tough to predict well before hand and acted upon. This results in 

degraded positioning as certainty and incomplete repeatability. So it is 

necessary to nullify or attenuate the disturbing nuances to achieve the 

best specifications. In most cases SMC or ASMC-based control 

methods can inherently make the system asymptotically stabilized in 

response to parametric uncertainties and disturbance estimations. But 

beyond such achievements, the operator may demand outstanding 

performance and call for trajectory tracking achievements in micro 

seconds with outmost accuracy. Few available methodologies of 

achieving such demands are 

5.1 SLIDING PERTURBATION OBSERVER 

The concept of Perturbation Estimation is introduced in Sliding Mode 

Control which outcomes in a procedure called Sliding Mode Control 

with Perturbation Estimation (SMCPE). It involves a Perturbation or 

Disturbance vector which combines the consequences of all the 

uncertainties and external perturbations together and this calculation 

constitutes a real time compensation mechanism against unknown 



 

                                                                                                                         Page 53 
 

parametric uncertainties. The precision of this calculation is the 

deciding consideration for robustness in this structure. As a result, the 

actuating terms of the error dynamics are minimised from the 

unknown uncertainties (as in the conventional Sliding Mode Control) 

to the precision within their calculations. This results in an improved 

command following accuracy without being more conservative 

stabilizing. SMCPE opens up an important design aspect which is 

design of disturbance observers for the controller. Perturbation 

observers should be precisely exact within the frequency range of 

consideration to make the system robust. But this methodology is 

expensive because of the cost of high quality sensor and full state 

feedback terms, which are most important to get efficient performance 

levels. But there is an issue with such structures which is the closed 

loop stability is very tough to achieve. The perturbation estimators 

which is obtained by applying numerical methods on the state 

feedback vector has also few constraints in the estimation phase itself 

because high efficiency filters are needed in applications with noisy 

velocity feedback. Another efficient state estimator that fits well for 

nonlinear and uncertain systems is Sliding observer (SO) which has a 

partial state feedback. Error in Estimation of the available output is the 

sliding function of this observer. Another observer in literature is 

Luenberger Observer, which is a  basic SO structure consists of 

switching functions added to a traditional SO. The result of 

perturbation estimation and SO is termed as Sliding Perturbation 

Observer (SPO) which creates a highly efficient algorithm immune to 

perturbations, utilizes only quasi state feedback is far better than 

traditional SMC  
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5.2 TIME DELAY CONTROL (TDC) 

Time Delay Control does not depend on information of the system 

dynamics, constant iterative tasks, high switching frequencies or 

discontinuous control. The methodology requires direct estimate of 

derivatives of the states to estimate current  prospects of unknown 

dynamics and perturbations linked with the system  through time 

delay. The controller thus discussed uses the accumulated information 

to cancel the unnecessary dynamics and unknown disturbances 

simultaneously which is then nullified by considering necessary offset 

in the dynamics of the plant. The TDC bases earlier calculations of the 

response of the system and control inputs to immediately alter the 

control actions rather than fixing the vector values. The TDC 

algorithm has been applied to several non-linear systems as well as 

several real time  setups which shows that the outcomes are always 

better in terms of effectiveness befitting way in line with expectations 

in performance. 
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5.3 MATHEMATICAL FORMULATIONS FOR A 

GENERALIZED UNCERTAINTY ESTIMATOR 

The dynamics of a robotic manipulator is given by Eq (3.20) 

             

The above equation are linearly parameterizable as 

                                  (5.1) 

where  is a constant px1 vector of robotic parameters and Y is a nxp 

matrix having known functions of the generalized coordinates and 

their higher derivatives. 

The bound on the parametric uncertainty is considered as  

                                      (5.2) 

Where  and  . Since  is assumed to be unknown,  

is estimated with the estimation law. The estimate of  is defined as  

     (5.3) 

A nominal control vector  is hence defined as  

            (5.4) 

Where  ,  ,  and   

τ = M(θ)!!θ +C(θ) !θ +G(θ)g

M(θ)!!θ +C(θ) !θ +G(θ)g =Y(θ, !θ, !!θ)φ

φ

!φ = φ0 −φ

φ0 ∈R
n ρ ∈R+ ρ ρ

ρ

!ρ(t) " ρ − !ρ(t)

τ 0

τ 0 = M(θ)a+C(θ)v+G0(θ)−Ks

v = !qd − Λ "q a = !v s = !"q + Λ !q !q = q − qd
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 is given double continually differentiable reference trajectory 

and the gain matrices  and  are positive definite and 

diagonal matrices. 

So there is a control input  in terms of nominal control vector 

 as 

             

                    (5.5) 

Where  is the aditional effort to make the system immune to 

parametric uncertainties denoted by  . 

So the overall control law becomes 

              (5.6) 

 

 

qd
K Λ

τ

τ 0

τ = τ 0 +Y (θ , !θ ,v,a)p(t)

= Y (θ , !θ ,v,a)(θ0 + p(t))− Ks

p(t)

!φ

M (θ ) !s+C(θ , !θ )s+ Ks = Y (θ , !θ ,v,a)( !φ + p(t))
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CHAPTER 6 

SIMULATIONS AND RESULTS 

In this chapter, we discuss the results obtained from simulating the 

various objectives of this research. 

6.1 SIMULATION MODELS IN SIMULINK AND 

MATLAB 

6.1.1 MODEL OF 2-DOF ROBOTIC MANIPULATOR  

 

Fig. 6.1 Simulink Model for 2-DOF Robotic Manipulator 

In this SIMULINK model, a 2-DOF robotic manipulator is formulated 

on which the proposed control architecture is based. 
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The various blocks utilised are 

• MACHINE ENVIRONMENT – Denotes the mechanical 

simulation environment for the computer to which the block is 

connected: gravity forces, dimensions, analysis mode, 

constraint solver type, tolerances, linearizability, and 

visualization. And Visualization is activated in this block to get 

the real time simulation 

 

The gravity vector considered here is [0 -9.8 0] 

 

• GROUND - Terminates one side of a Joint to a reference 

location in the generalized coordinate system.  

Here ground is at [0 0 0]. 

 

• REVOLUTE – Represents rotation with 1 Degree of Freedom. 

The follower (F) is allowed to rotate around base (B) and has a 

single axis of rotation. Sensor and actuator ports can be 

cascaded. Right Rand rule suggests the direction of forward 

motion provided the direction of axis and sequence of base 

follower. 

Number of sensors is 3 and the axis of action is [0 0 -1] 

 

• BODY – Allows to describe a rigid mechanical body in terms 

of  mass m, inertia J, and coordinate origins and axes for centre 

of gravity (CG) or other user-defined Body coordinate systems. 

By default, the origin and orientation has no initial values unless 

Body and/or connected Joints are described separately. This 
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block has additional settins for customizable body geometry and 

colour. 

 

As considered from Table 6.1, the mass is considered 0.7 kg and 

0.5 kg for Link 1 and Link 2 respectively and the corresponding 

link lengths are 1 metre and 0.8 metres respectively. 

 

• JOINT INITIAL CONDITION - Sets the initial linear/angular 

position and velocity of some or all of the primitives in a Joint. 

Connect to a Joint to see a list of its primitives. 

 

The default initial angles for both the links are 0 degrees. 

 

• JOINT SENSORS - Measures linear/angular position, velocity, 

acceleration, computed force/torque and/or reaction 

force/torque of a Joint primitive. Spherical measured by 

quaternion. Base-follower sequence and joint axis determine 

sign of forward motion. Outputs are Simulink signals. Multiple 

output signals can be bundled into one signal. Connect to Joint 

block to see Connected to primitive list. 

 

Angle, Angular Velocity and Angular Acceleration are checked 

for this block. 

 

• JOINT ACTUATOR - Actuates a Joint primitive with 

generalized force/torque or linear/angular position, velocity, 

and acceleration motion signals. Base-follower sequence and 

joint axis determines sign of forward motion. Inputs are 
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Simulink signals. Motion input signals must be bundled into one 

signal. Connect to Joint block to see Connected to primitive list. 

The default unit considered here is N-m. 

 

• DISTURBANCE FUNCTIONS – The disturbance functions 

are sinusoidal and constant functions. 

6.1.2 THE SLIDING MODE CONTROL ARCHITECTURE 

 

   Fig. 6.2 Simulink Model for SMC Architecture 

The output of the integrated MATLAB Fcn ‘smc actuated output’ 

actuates the system when the plant deviates from its ideality. This 

function along with the nominal dynamic torque drives the plant 

together. 

The integrated MATLAB Fcn is called upon from a m-file contain the 

following script which corroborates with the equations governed in 

4.25 to 4.40 
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The default values for the controller are as described in Table 6.2 

function output = smc(e, e_dot, Kd, lambda, psi) 
    s = lambda * e + e_dot; 
         
    if (abs(s) >psi)     
        sat_s = sign(s); 
    else 
        sat_s = (s/psi); 
    end 
     
    output = -Kd * sat_s; 
  

end 
 

The integrated MATLAB Fcn ‘tracking signal’ identifies the desired 

trajectory that is applied to the links. In this case as in Fig. 6.2, the 

trajectory tracking command in Link 2 is shown. 
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6.1.3 SIMULATION MODEL FOR THE NOMINAL DYNAMIC 

MODEL OF THE TWO-DOF ROBOTIC MANIPULATOR 

 

Fig. 6.3 Simulink Model for Nominal Dynamics of the plant 

The integrated MATLAB Fcn ‘dyn_model’ superimposes the nominal 

dynamics of the Two-DOF robotic manipulator is called upon from a 

m-file contain the following script which corroborates with the 

equations governed in 4.25 to 4.37 

function output = dyna(theta1, theta_dot1, 
theta_dot_dot1, theta2, theta_dot2, theta_dot_dot2, 
lambda1, error_dot1, lambda2, error_dot2) 
    r1 = 1; 
    r2 = 0.8; 
    m1 = 0.7; 
    m2 = 0.5; 
    g = 9.8; 
     
    M11 = (m1 + m2) * r1^2 + m2 * r2^2 + 2 * m2 * r1 * r2 
* cos(theta2); 
    M12 = m2 * r2 ^2 + m2 * r1 * r2 * cos(theta2); 
    M22 = m2 * r2 ^2; 
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    F12 = m2 * r1 * r2 * sin(theta2); 
  
    g1 = (m1 + m2) * r1 * cos(theta2) + m2 * r2 * 
cos(theta1 + theta2); 
    g2 = m2 * r2 * cos(theta1 + theta2); 
     

    f_est1 = M11 * theta_dot_dot1 + M12 * 
theta_dot_dot2  - F12 *  theta_dot2 * theta_dot1 - F12 
* (theta_dot1 + theta_dot2) * theta_dot2 + g1 * g; 

f_est2 = M12 * theta_dot_dot1 + M22 * 
theta_dot_dot2 +  F12 * theta_dot1 * theta_dot1                                                
+ g2 * g; 

    
     
    output(1,1) = -f_est1 + theta_dot_dot1 + lambda1 * 
(error_dot1); 
    output(2,1) = -f_est2 + theta_dot_dot2 + lambda2 * 
(error_dot2); 
  
    end 
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6.1.4 SIMULATION MODEL FOR THE OVERALL SYSTEM

 

Fig. 6.4 Simulink Model for the overall system 
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6.2 SYSTEM SPECIFICATIONS 

TABLE 6.1 
SYSTEM PARAMETERS 

Parameter Link 1 Link 2 

Mass 0.7 kg 0.5 kg 

Length 1 meter 0.8 meter 

 

TABLE 6.2 
CONTROLLER PARAMETERS 

Parameter Link 1 Link 2 

Gain matrix, K 
 

Constant  4 4 

Boundary 
width ( ) 

0.1 0.1 

 

TABLE 6.3 
NATURE OF DISTURBANCE 

Set Link1 Link 2 Figure 

Set 1 
Sinusoidal 

 
Constant 

 
11-13 

Set 2 
Sinusoidal 

 
Sinusoidal 

 
14-16 

Set 3 

Random 
 

 

Random 
 

 

17-19 

  

24 0
0 19

⎛

⎝⎜
⎞

⎠⎟

λ

φ

8sin(t) 8

10sin(t) −10sin(2*t)

rand(−10,10)

Ts = 0.5s

rand(−10,10)

Ts = 0.5s
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6.3 SIMULATION RESULTS 

6.3.1 TRAJECTORY TRACKING TESTS 

6.3.1.1 SLOW VARYING TRAJECTORIES 

The links are subjected to the following tracking commands with both 

the arms initially at 0 degrees. 

 degrees      (6.1) 

 degrees      (6.2) 

The response as obtained in Fig. 6.5 shows that the links follow the 

commands with outmost accuracy. Fig. 6.6 shows the corresponding 

actuator effort in terms of torque that needs to be subjected at the two 

links. The waveforms are obtained with lower values of controller 

gains because the system is not under any stress in the form of fast 

acting signals or disturbances. The gain values being  and 

  . Also, with lower value of gains, the actuator effort required 

is comparatively lower. The waveforms show substantial chattering 

for which a high frequency actuating effort is required. This issue is 

mitigated using the boundary layer in the Sliding Mode Controller 

with boundary values as mentioned in Table 6.2. The corresponding 

actuator efforts obtained are shown in Fig. 6.7. 

  

θ1=11.45+17.19 (cos(t))

θ2 =11.45−22.91 (sin(t))

K1=17

K2 =15
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Fig. 6.5. Response of  and  with respect to slow varying tracking 
commands 

 

Fig. 6.6. Actuator efforts and  for slow varying tracking commands 
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Fig. 6.7. Actuator efforts  and  for slow varying tracking commands 
with boundary layer 

6.3.1.2 FAST VARYING TRAJECTORIES 

Here, to check the trajectory tracking capability, the commands are 

applied with components having twice the angular frequency so as to 

understand how the controller can handle fast varying commands as in 

[51]. The arms are initially kept at   degrees and  

degrees and the links are subject to the following trajectories 

               (6.3) 

               (6.4) 

The response of both the links are shown in Fig. 6.8 and the actuator 

torques are shown in Fig. 6.9  

0 1 2 3 4 5 6 7 8 9 10
time(seconds) 

0

10
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40

50

 (N
-m

)
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θ10 = +20 θ2o =−20

θ1=11.45+17.19 (cos(t)+cos (2*t))

θ2 =11.45−22.91 (sin(t)+ sin(2*t))
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Fig. 6.8. Response of  and  with respect to fast varying tracking 
commands 

 

Fig. 6.9. Actuator efforts  and  for fast varying tracking commands 
with boundary layer 
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6.3.2 DISTURBANCE TOLLERANE TESTS 

The system is now subjected to the commands as described by Eq. 

(6.1) and Eq. (6.2) and the following combinations of disturbances 

in terms of torque (N-m) are subjected to the links. These 

disturbances might be on account of a gust of wind, or varying 

dynamics of the load. The responses of the links along with the 

actuating efforts required are shown in figures as mentioned in 

Table 6.3. 

 

Fig. 6.10. Trajectory tracking of with sinusoidal disturbance in link 1 and 
constant disturbance in link 2 
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Fig. 6.11  Trajectory tracking of with sinusoidal disturbance in link 1 and 
constant disturbance in link 2 

 

Fig. 6.12.  and with sinusoidal and constant disturbances in link 1 and 
2 respectively  
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Fig. 6.13. Trajectory tracking of with sinusoidal disturbances in both 
links 

 

Fig. 6.14. Trajectory tracking of with sinusoidal disturbances in both 
links 
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Fig. 6.15.  and  with sinusoidal disturbances in both links 

 

Fig. 6.16. Trajectory tracking of with random disturbances in both links 
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Fig. 6.17. Trajectory Tracking of  with random disturbances in both links 

 

Fig. 6.18.  and  with random disturbances in both links 
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6.3.3 PARAMETRIC UNCERTAINTY TESTS 

The robotic arm may be subjected to loads of different masses at 

different instances and to verify the robustness of this controller, the 

mass of link 1 is now altered to 1.2 kgs and tested with the tracking 

commands as mentioned in Eq. (6.1) and Eq. (6.2). The responses 

obtained are shown in Fig. 6.19 and the actuating commands in Fig. 

6.20. The maximum value of actuating effort required is within the 

limits set for this system. 

 

 

Fig. 6.19. Trajectory Tracking of  and  when mass of link 1 is 
subjected to variation 
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Fig. 6.20.  and  when mass of link 1 is subjected to variation 
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CHAPTER 7 

 CONCLUSION AND FUTURE WORK 

 

7.1 CONCLUSION 

This research presents a SMC controller for a 2-link robotic arm with 

saturation function to overcome chattering. The controller design 

quoted in Chapter 3 is simulated using MATLAB/Simulink 

environment. The controller is tested with trajectory tracking in terms 

of both slow varying and fast varying commands and the results show 

promising outcomes. The system is also subjected to a combination of 

disturbances and the disturbance handling capabilities of the controller 

is studied. The outcomes from the disturbance handling scenarios 

suggest that the controller is essentially robust. Also, the phenomenon 

of parametric uncertainties is tested for this controller and it can be 

confirmed that the controller is immune to certain parametric 

uncertainties and hence it can be concluded that the robust SMC 

controller is invariant of the system dynamics (point of consideration 

being nonlinearities and uncertainties) during the sliding phase. To 

sum up the proposed control structure has outstanding regulation with 

excellent steady state performance . It has acceptable response to fast 

varying commands. The control effort as a measure of energy 

expenditure is also minimal and most importantly the controller is 

essentially robust.  
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7.2 SCOPE FOR FUTURE WORK 

• The controller has excellent trajectory tracking capabilities but 

needs improvement on regulation problems i.e the end effector 

positions vibrate when it is desired to hold at a particular angle. 

So a proper selection of controller gains or hybrid SMC control 

laws may be applied to overcome this. 

• Various trajectories (different angular velocities) are handled 

better with specific controller gains. For example slow varying 

trajectories can work quite well with low values of controller 

gains hence minimising energy in the actuator efforts. So the 

methodology of Gain Scheduling can be implemented for 

optimally picking the gain sets. 

• An empirical formulae can be obtained to get an idea about the 

gain sets based on plant parameters. Say a manipulator of mass 

m kg and length l can get a guideline to choose the controller 

gains depending upon its present parameters. 

• Advanced methods like Feedback Linearization , Uncertainty 

and Disturbance Rejection techniques must be considered and 

implemented over the SMC controller 

• Also, to ensure a full proof control the reaching phase can be 

ascertained with robustness . 
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Abstract— A robust sliding mode control (SMC) algorithm 
is designed which is used to control a 2-link robotic arm. The 
controller is tested for various types of disturbances and model 
parametric uncertainties. The novelty of the work lies in the 
fact that the designed controller is capable of handling slow 
varying disturbances, fast varying as well as unpredictable 
disturbances. Simulation results validate the accurate tracking 
capability and robust performance.  

Keywords—SMC control, Robust Controller, dynamic 
model, robotic manipulator, parametric uncertainty, disturbance 
rejection 

I. INTRODUCTION 
Control of robot manipulators is still a challenging 

control systems design problem today due to its high 
nonlinearity and strongly coupled robot dynamics [1]. The 
task gets even more complicated when the system is 
subjected to various unknown environments in the form of 
model uncertainties and unmeasurable external disturbances. 
With the use of the robots in critical applications like 
surgery, nuclear containments, industrial assembly lines etc., 
precise control of the robot arms has become an essential 
requirement. So, the figure of merit defining the controller is 
robustness and the modern-day design demands optimal 
control with minimal effort or energy to achieve a particular 
task. The end effectors of the robotic manipulators are to 
follow some desired trajectories as close as possible. 
Therefore, trajectory tracking problem is the most significant 
test to grade a controller design. A detailed survey of various 
strategies proposed in the literature for the design of robust 
controllers for robotic manipulators is mentioned in [2]. 

Ideally, the most common control systems design 
formulation is the arbitrary assignment of the system poles of 
a set of decoupled and linearized sub-system based on certain 
specifications. The essential requirements for such designs 
are that the system nonlinearities are neglected and the 
controller is acted upon with the most accurate dynamical 
model. Any mismatch due to parameter or modelling 
uncertainties will degrade the performance of the system and 
undermine the benefits of a controller. In most cases the 
uncertainty is assumed to be bounded by higher-order 
polynomials or approximated by some continuous functions 
[3]. Various model based robust control techniques have 
been presented in the literature for designing tracking 
controllers for robot manipulators. Some notable controllers 
include designs based on Proportional-derivative (PD) 
control [4], Proportional-integral-derivative [5], Lyapunov-
based theory [6], optimal control [7], fuzzy logic controllers 
[8], neural networks [9] etc.  

Sliding Mode Control (SMC) is a non-linear, robust 
control technique. The SMC based controller is resistant to 
uncertainties and parameter variations (if any), and does not 
demand for an exact model of the robotic arm, therefore a 
preferred choice for controlling the system of interest in this 
article. The SMC technique utilizes the theory of Variable 
Structure System (VSS) [10]. It involves driving an 
underlying state or the error dynamics of a state to be 
maintained at an attractive manifold, also called a sliding 
manifold due to which, the desired dynamic behaviour of the 
system can be asymptotically ascertained. The proceeding 
for a sliding mode control action involves two phases, the 
reaching phase and the sliding phase [11]. The reaching 
phase tries to align the required system state approach 
towards the sliding manifold while the sliding phase ensures 
the required dynamic behaviour is achieved [12]. During this 
sliding motion, the dynamics or properties of the system 
becomes invariant, thus making it less important to neutralise 
the system nonlinearities, which are otherwise required to be 
nullified if a conventional controller is used [13].The 
yielding dynamic motion of the states also becomes immune 
to certain parameter variations and external disturbances 
provided there are known bounds in those disturbances and 
variations [14]. However, the robustness property of the 
conventional sliding mode control with respect to variations 
of system parameters and external disturbances can only be 
achieved after the sliding phase is achieved. During the 
reaching phase, there is no guarantee for robustness [15]. An 
ideal control action from a sliding mode controller results in 
a discontinuous control action thus reflecting in a 
discontinuous actuator effort called chattering, which may 
demand high frequency switching actuators. The chattering 
phenomenon can be substantially mitigated by utilizing a 
linear saturation boundary layer function in the SMC 
algorithm [16]. One more advantage of SMC is that we can 
obtain sliding mode motion for higher order systems even if 
the controller is designed via reduced order modelling [17].  

The organization of this article is as follows. In Section 
II, the mathematical formulations for the dynamics of a 2-
link robotic arm are reviewed. Section III presents a sliding 
mode control algorithm and its integration with the system. 
Section IV illustrates the simulation results for the various 
test cases, thus justifying the designed controller. Finally, in 
section V, conclusions are presented. 

II. DYNAMIC MODELLING 
This section formulates the mathematical equations for 

the statement of the problem which is the dynamical 
equations of motion of a 2-link robotic arm, allowed to swing 
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