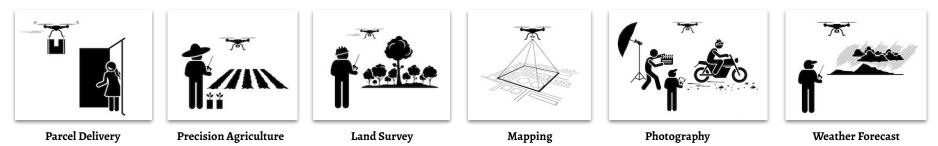
Annual Progress Seminar

Path Planning of an UAV with Minimal Energy Consumption

Paraj Ganchaudhuri (206102023)

Under the guidance of **Dr. Chayan Bhawal**


18 May 2023

Department of Electronics and Electrical Engineering Indian Institute of Technology Guwahati

Introduction

Use Cases of UAVs

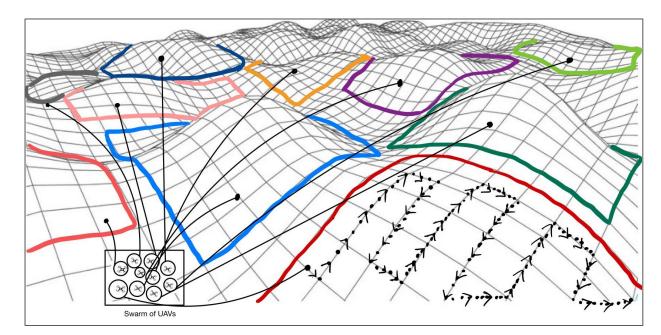
UAVs in India

- UAVs have immense scope in the field of agriculture and border patrolling. [Online article FICCI]
- The Civil Aviation Ministry estimates India's drone sector to become a ₹ 120 -150 billion industry by 2026. [Online article IBEF]
- "The Drone Rules 2021" has liberalised the drone rules and aims to encourage more applications using UAVs.

Technical Drawbacks with UAVs

- Inefficient mode of transport
- Limited flying time
- Power Consumption estimation is exhaustive and inaccurate
- Path Planning is complicated in implementation

• Power Consumption Model


Flying time Range Speed Payload

• Path Planning

Routes Number of UAVs Battery Capacity

• Multi-agent algorithms

Environmental Dynamics External Constraints

A quadrotor swarm surveying a 3D terrain

Power Consumption Modelling Parameters affecting power of a UAV ^{[1],[2],[3]}

UAV Design

- UAV weight
- Number of rotors
- Number of blades per rotor
- Total propeller area
- Environment
 - Air density
 - Gravity
 - Wind velocity

- Blade chord length
- Angle of attack of propeller disk
- Advance ratio of propellers
- Size of UAV

- UAV body drag coefficients
- Battery weight
- Battery Capacity
- Size of battery

- Power transfer efficiency
- Maximum speed
- Maximum payload
- Lift-to-drag ratio

- Wind incident angle
- Weather
- Ambient temperature

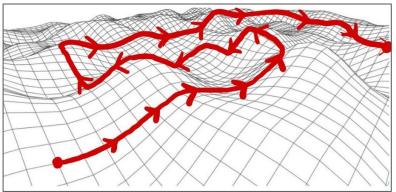
• Drone dynamics

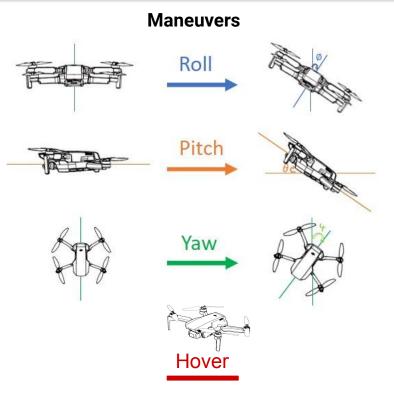
- Airspeed (vertical and horizontal)
- Motion (take-off, landing, hover, levelled flight)
- Acceleration/Deceleration
- Roll/Pitch/Yaw angle

• Delivery Operations

- Payload weight
- Size of payload
- Drag coefficient of payload
- Fleet size and mix

- Rotor speeds
- Flight angle
- Flight altitude

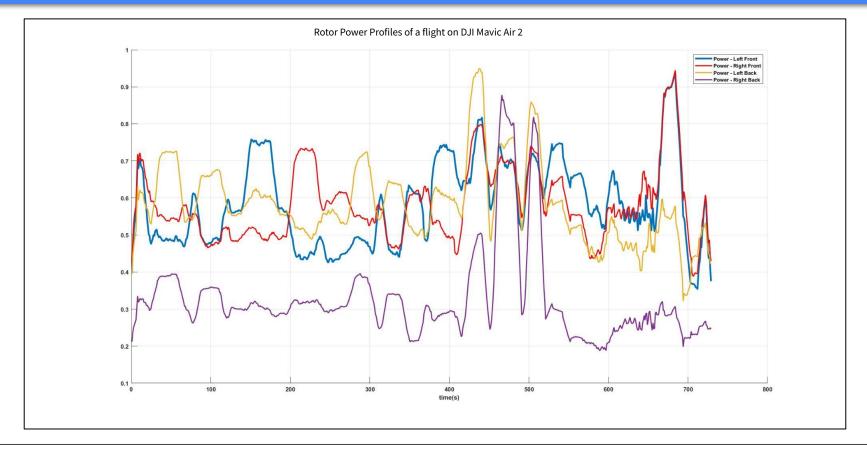

- Single/multi stop trip
- Delivery mode (tether, landing, parachute)
- Area of service region

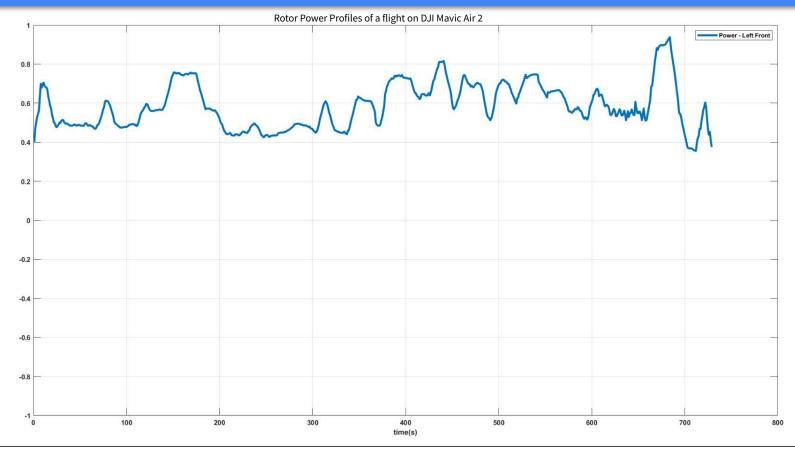

J. Zhang, J. F. Campbell, D. C. Sweeney II, and A. C. Hupman, Energy consumption models for delivery drones: A comparison and assessment," *Transportation Research Part D: Transport and Environment*, vol. 90, p. 102668, 2021.
 Z. Liu, R. Sengupta, and A. Kurzhanskiy, \A power consumption model for multirotor small unmanned aircraft systems," in 2017 International Conference on Un-manned Aircraft Systems (ICUAS). IEEE, 2017, pp. 310{315.
 K. Dorling, J. Heinrichs, G. G. Messier, and S. Magierowski, \Vehicle routing problems for drone delivery," *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, vol. 47, no. 1, pp. 70{85, 2016.

Power Consumption Modelling

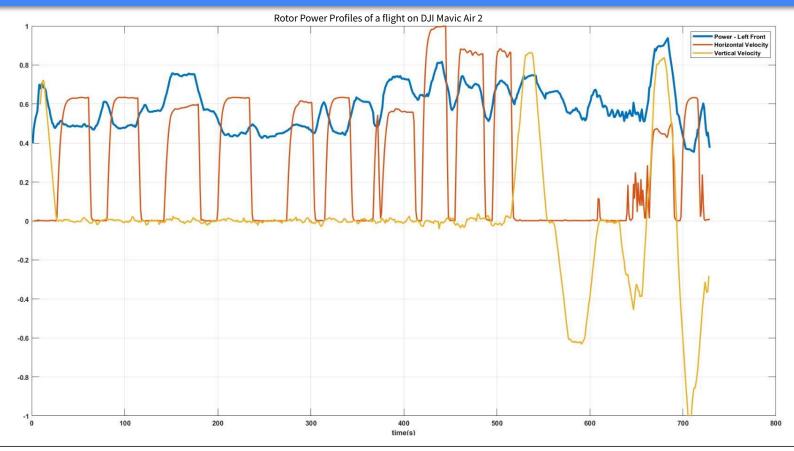
Existing Power Models

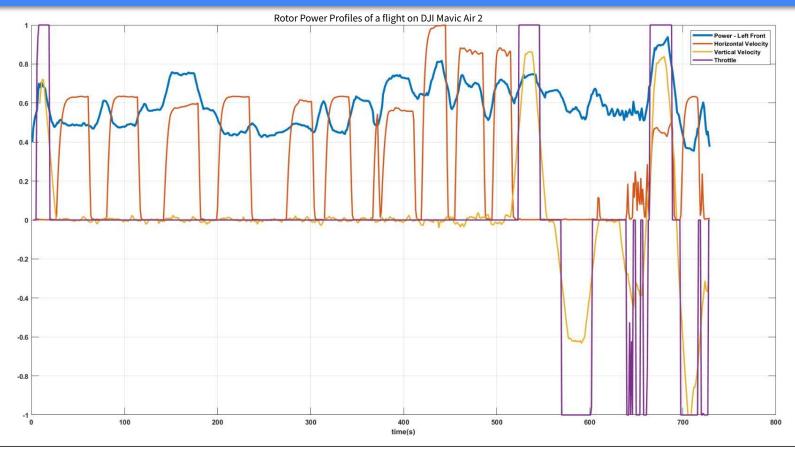
- Power is given as a static number [1]
- Oversimplification of deriving Power from Hovering [2]
- Power formulation on straight line trajectories
- Encapsulating aerodynamics aspects with constants [3]
- Lack of consensus in predicting power with different power models [4]

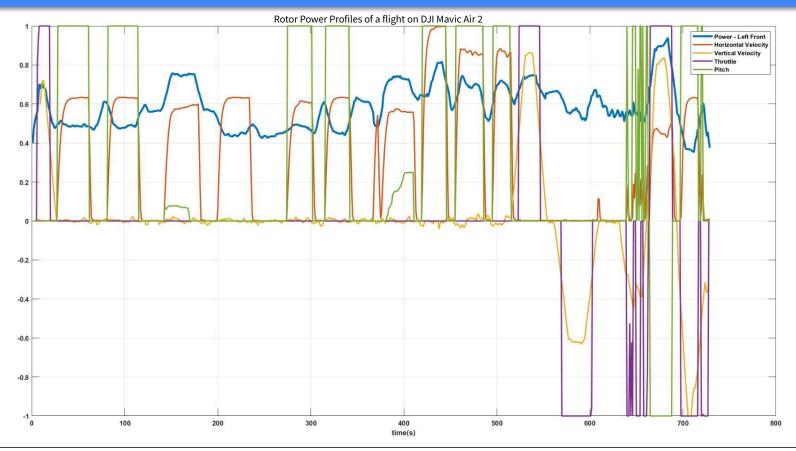


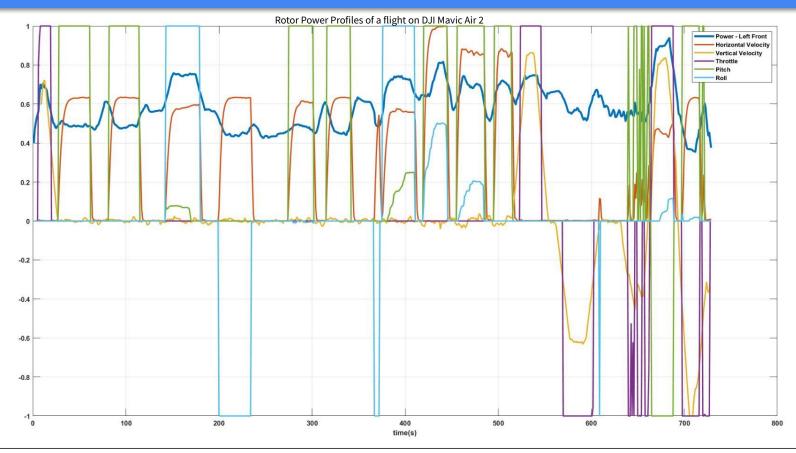

A quadrotor travelling in a 3D terrain

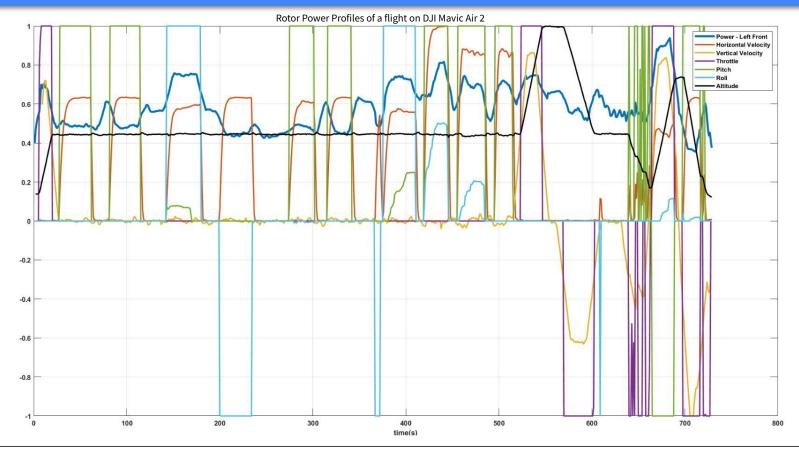
[1] Liu et. al., "A power consumption model for multirotor small unmanned aircraft systems," in 2017 ICUAS. IEEE, pp. 310–315. [2] R. D'Andrea, "Guest editorial can drones deliver?" IEEE Transactions on Automation Science and Engineering, pp. 647–648, [3] J. Leishman, Principles of Helicopter Aerodynamics: 12 (Cambridge Aerospace Series, Series Number 12). Cambridge, UK: Cambridge University Press, 2002. [4] J. Zhang, J. F. Campbell, D. C. Sweeney II, and A. C. Hupman, "Energy consumption models for delivery drones: A comparison and assessment," Transportation Research Part D: Transport and Environment, vol. 90, p. 102668, 2021.


Power Consumption Modelling Motivation


Power Consumption Modelling Motivation

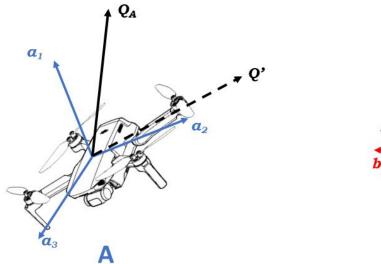

Power Consumption Modelling Motivation

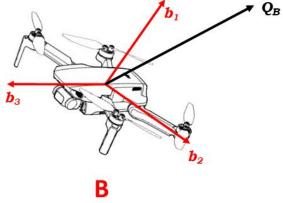

Power Consumption Modelling Motivation

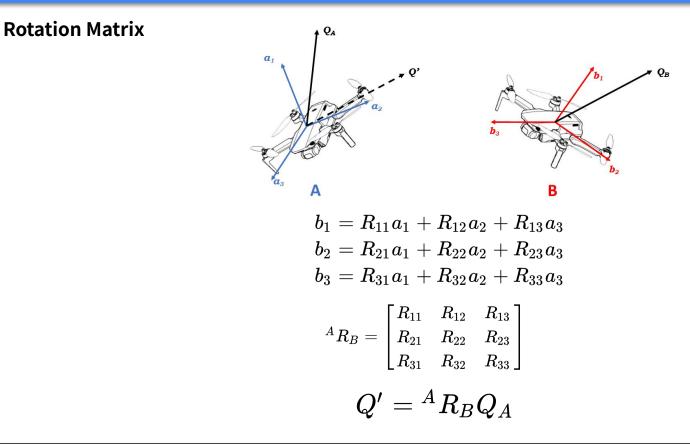

Power Consumption Modelling

Power Consumption Modelling

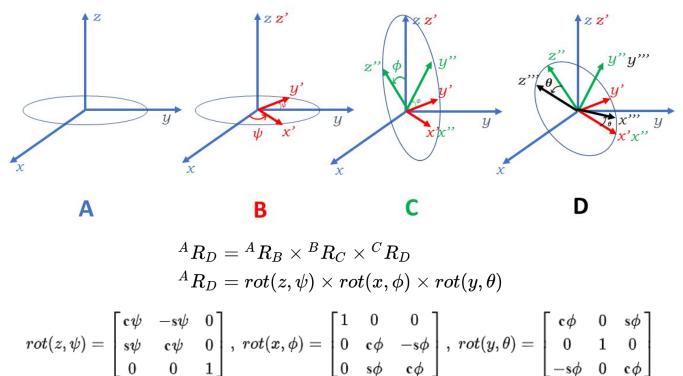
Power Consumption Modelling Motivation




Power Consumption Model for a quadrotor


Power Model of a quadrotor Preliminaries

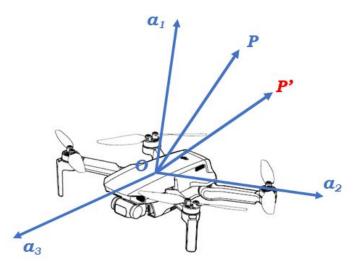
Reference Frames



Power Model of a quadrotor Preliminaries

Power Model of a quadrotor Preliminaries

Euler Angles

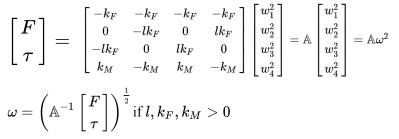


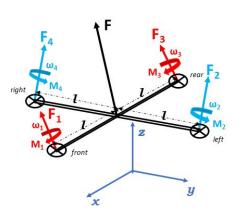
Angular Velocity Vectors

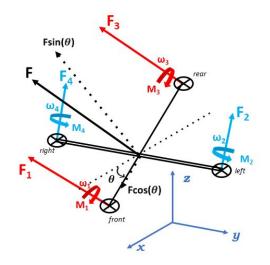
For continuous motion $\dot{q}(t) = \dot{R}(t)p$

$$\dot{q} = \underbrace{\dot{R}(t)R^T(t)q}_{\hat{\omega_s}}
onumber R^T(t)\dot{q}(t) = \underbrace{R^T(t)\dot{R}(t)p}_{\hat{\omega_b}}$$

Rotation about z-axis

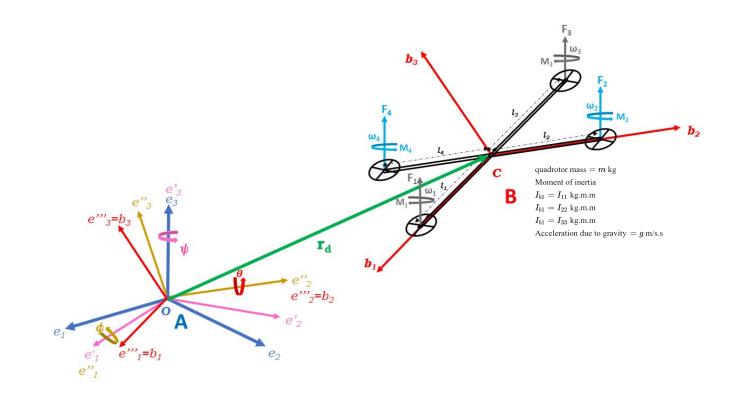


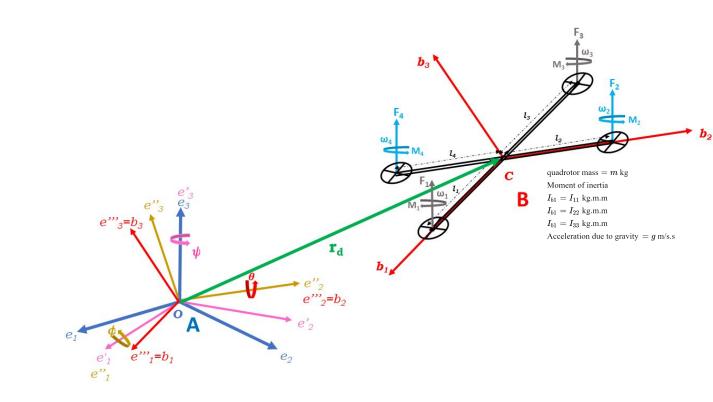

$$ec{OP} = p_1 a_1 + p_2 a_2 + p_3 a_3 \ ec{OP} = q_1 a_1 + q_2 a_2 + q_3 a_3 \ ec{OP'} = q_1 a_1 + q_2 a_2 + q_3 a_3 \ ec{\left[egin{array}{c} q_1 \ q_2 \ q_3 \end{array}
ight]}_{q} = {}^A R_X egin{bmatrix} p_1 \ p_2 \ p_3 \end{bmatrix}_{p} \end{array}$$


Power Model of a quadrotor Preliminaries

Thrust and Torque

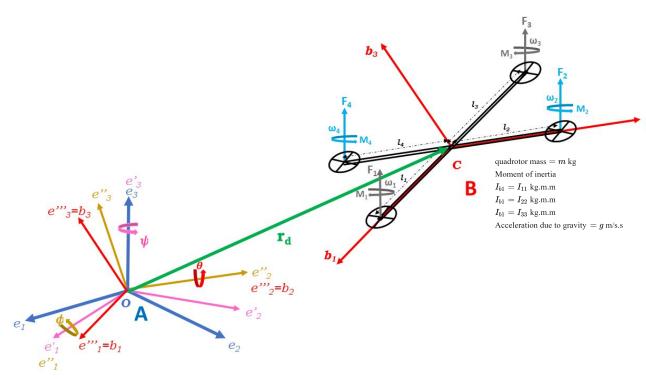
Thrust $F = k_F \omega^2$ k_F : fixed parameter w: angular velocity (RPM) Rolling Torque $\tau_{roll} = d(F_4 - F_2)$ $= lk_F(w_4^2 - w_2^2)$ Pitching Torque $\tau_{pitch} = lk_F(w_3^2 - w_1^2)$ Aerodynamic drag $M = k_M w^2$ k_M : fixed parameter Yaw Torque $\tau_{yaw} = M_1 - M_2 + M_3 - M_4$ $= k_M(w_1^2 - w_2^2 + w_3^2 - w_4^2)$



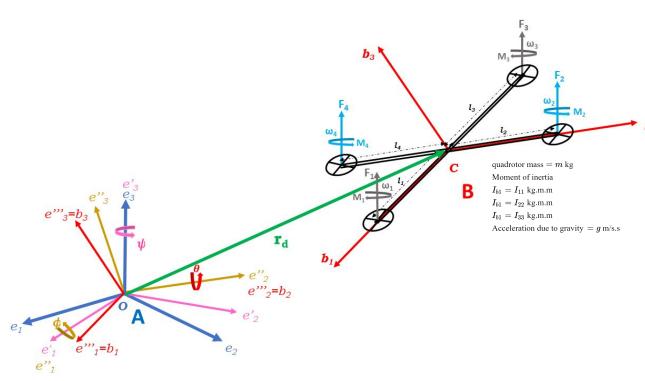

Hover

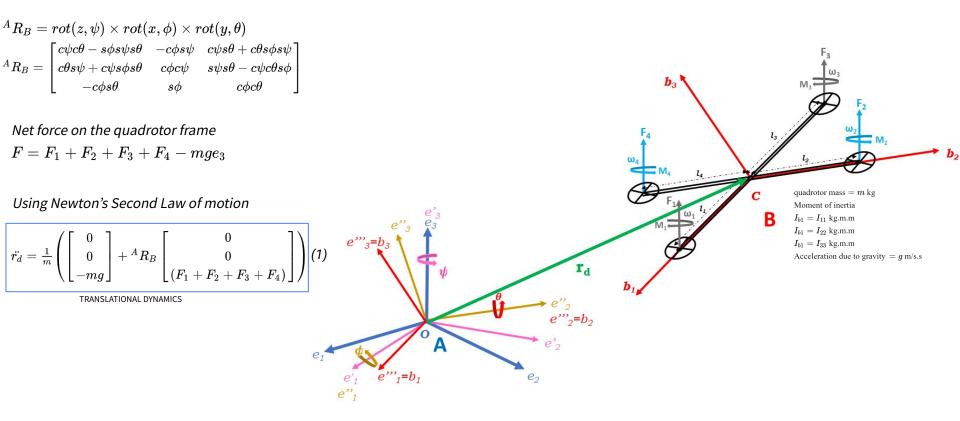
Forward Flight

Quadrotor dynamics

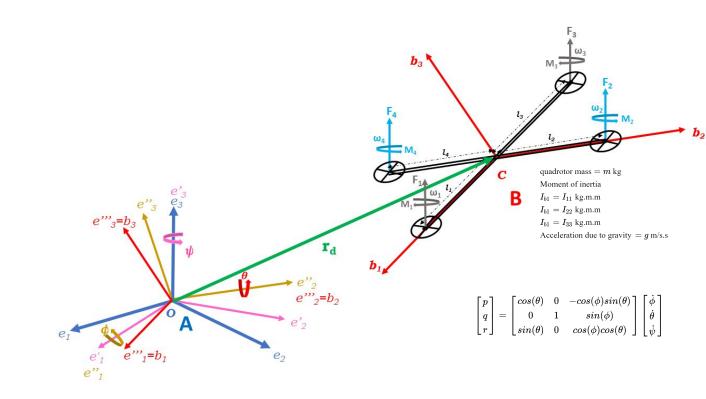


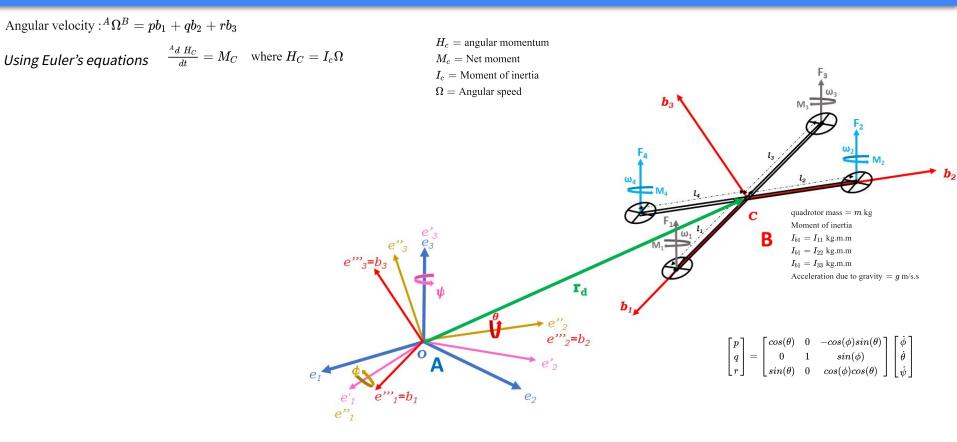
Power Model of a quadrotor Quadrotor dynamics - Translational Motion

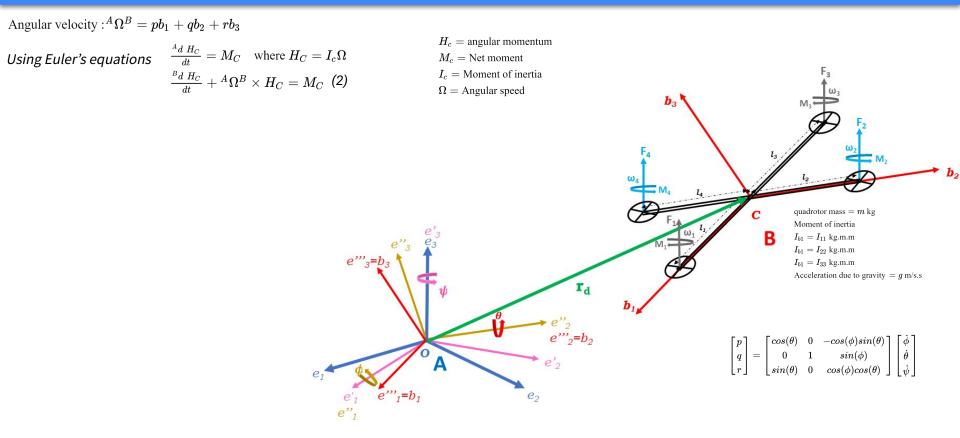

Power Model of a quadrotor Quadrotor dynamics - Translational Motion

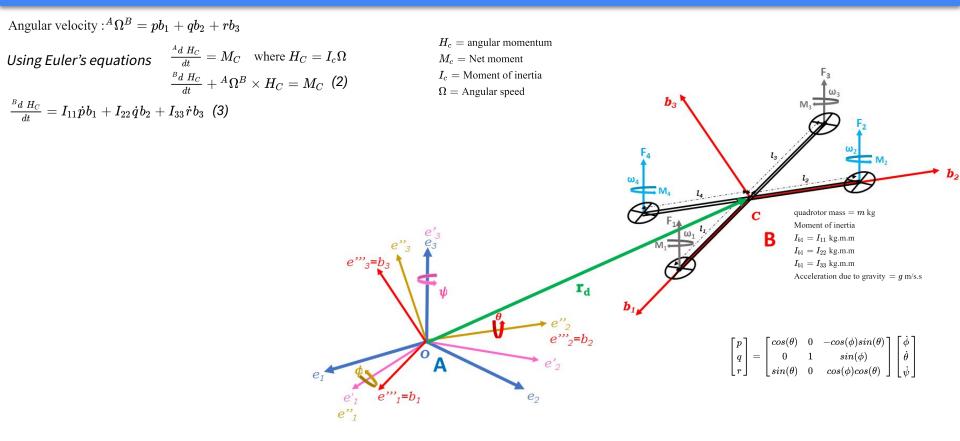

 ${}^{A}R_{B}=rot(z,\psi) imes rot(x,\phi) imes rot(y, heta)
onumber \ {}^{A}R_{B}=egin{bmatrix} c\psi c heta-s\phi s\psi s heta-c\phi s\psi & c\psi s heta+c heta s\phi s\psi \ c heta s\psi +c\psi s\phi s heta & c\phi c\psi & s\psi s heta-c\psi c heta s\phi \ -c\phi s heta & s\phi & c\phi c heta \end{bmatrix}$

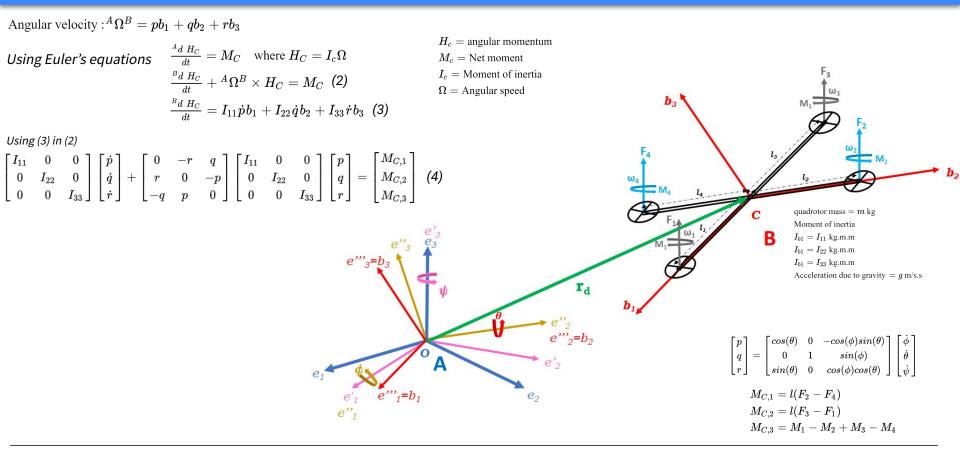
 ${}^{A}R_{B}=rot(z,\psi) imes rot(x,\phi) imes rot(y, heta)
onumber \ {}^{A}R_{B}=egin{bmatrix} c\psi c heta-s\phi s\psi s heta-c\phi s\psi & c\psi s heta+c heta s\phi s\psi \ c heta s\psi +c\psi s\phi s heta & c\phi c\psi & s\psi s heta-c\psi c heta s\phi \ -c\phi s heta & s\phi & c\phi c heta \end{bmatrix}$

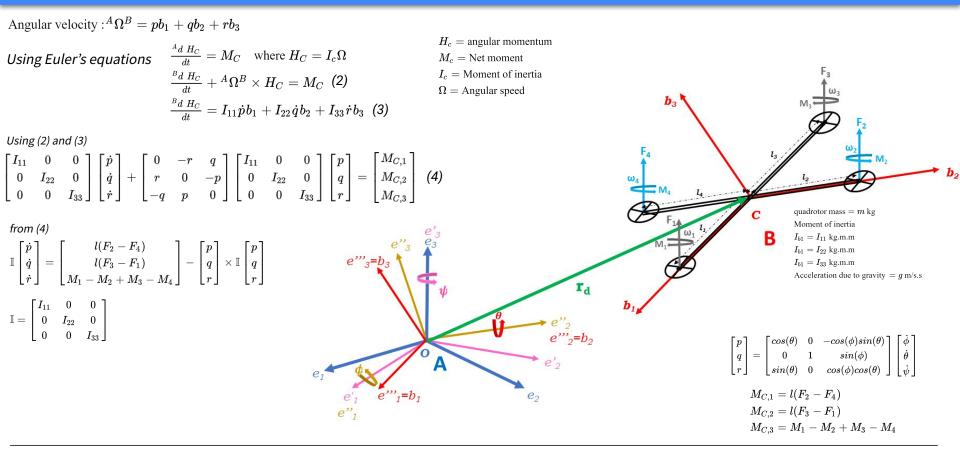

Net force on the quadrotor frame $F = F_1 + F_2 + F_3 + F_4 - mge_3$

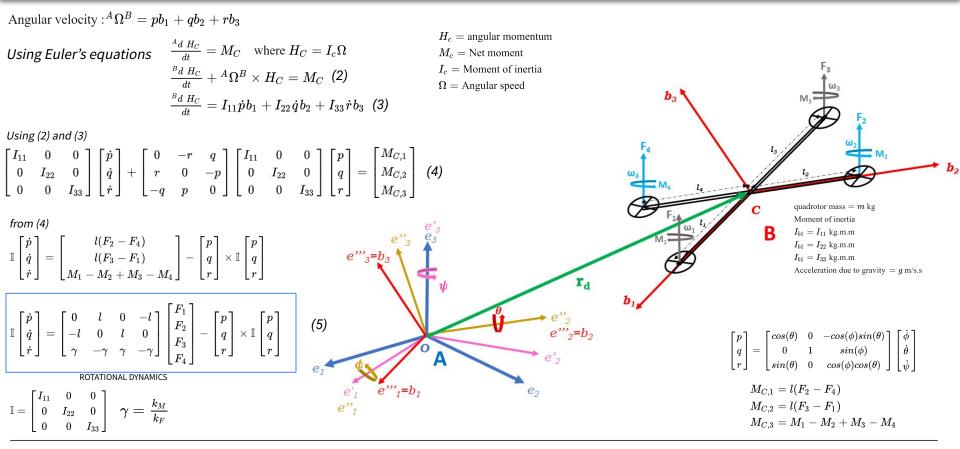


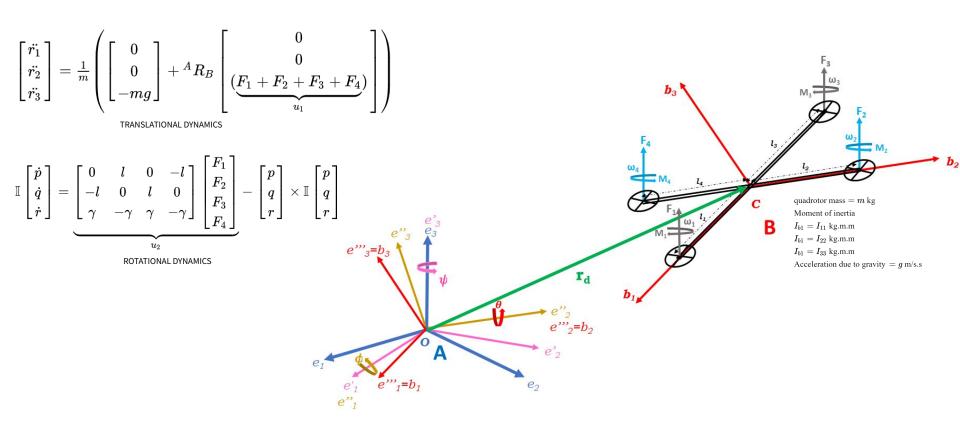



Quadrotor dynamics - Rotational motion


Angular velocity : ${}^A\Omega^B = pb_1 + qb_2 + rb_3$

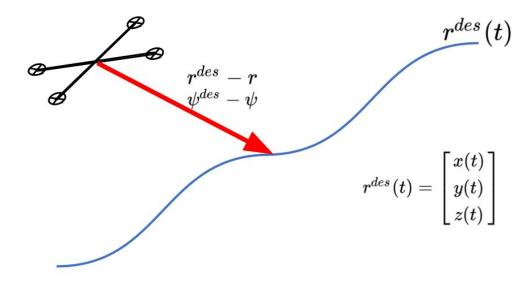




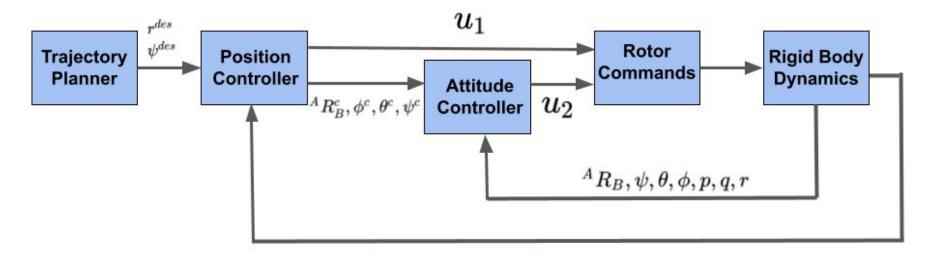


Quadrotor dynamics

Desired trajectory

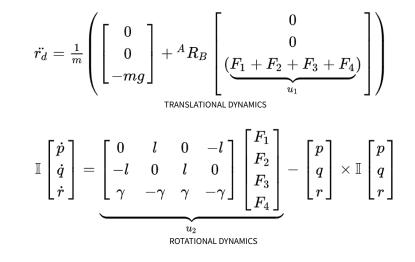

 $egin{aligned} &r^{des}(t), \dot{r}^{\; des}(t), \ddot{r}^{\; des}(t) \ &\psi^{des}(t), \dot{\psi}^{des}(t), \ddot{\psi}^{des}(t), \ddot{\psi}^{des}(t) \end{aligned}$

Error Dynamics


$$e_p = r^{des}(t) - r(t)
onumber \ e_v = \dot{r}^{des}(t) - \dot{r}(t)$$

For exponential decay of error

$$\ddot{r}^{\,des}(t)-\ddot{r}^{\,c}(t)+K_de_v+K_pe_p=0$$
 (6)


Control Architecture

Power Model of a quadrotor Quadrotor control

Linearized dynamics around hover

$$egin{aligned} &m{r}^{des}(t) = m{r} = m{r}_0, heta = m{\phi} = 0, \psi = \psi_0 \ &m{\dot{r}} = 0, m{\dot{\phi}} = m{\dot{ heta}} = m{\dot{\psi}} = 0 \ &(cos\phi pprox 1, cos heta pprox 1, sin\phi pprox \phi, sin heta pprox heta) \ &m{\ddot{r}}_1 = m{g}\left(heta \cos\psi_0 + \phi\sin\psi_0
ight) \ &m{\ddot{r}}_2 = m{g}\left(heta \sin\psi_0 - \phi\cos\psi_0
ight) \ &m{\ddot{r}}_3 = rac{1}{m}ig(F_1 + F_2 + F_3 + F_4ig) - m{g} \ &m{u}_1 \ &m{u}_1 \ &m{u}_1 \ &m{v}_1 \ &m{v}_1 \ &m{v}_1 \ &m{v}_1 \ &m{v}_2 \ &m{v}_1 \ &m{v}_1 \ &m{v}_2 \ &m{v}_1 \ &m{v}_1 \ &m{v}_1 \ &m{v}_2 \ &m{v}_1 \ &m{v}_1 \ &m{v}_1 \ &m{v}_2 \ &m{v}_1 \ &m{v}_1 \ &m{v}_2 \ &$$

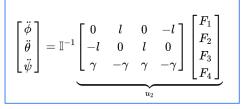
Power Model of a quadrotor Quadrotor control

 $\ddot{r}_{1} = g\left(\theta\cos\psi_{0} + \phi\sin\psi_{0}\right)$ (7) $\ddot{r}_{2} = g\left(\theta\sin\psi_{0} - \phi\cos\psi_{0}\right)$ (8) $\ddot{r}_{3} = \frac{1}{m}\left(\underbrace{F_{1} + F_{2} + F_{3} + F_{4}}_{u_{1}}\right) - g$ (9) $\mathsf{LINEARIZED TRANSLATIONAL DYNAMICS}$

from (6) which is the position control law

 $\left(\ddot{r}_{i}^{\,des}-\ddot{r}_{i}^{\,c}
ight)+k_{d,i}\left(\dot{r}_{i}^{\,des}-\dot{r}_{i}
ight)+k_{p,i}\left(r_{i}^{des}-r_{i}
ight)=0$ (10)

(10) rewritten as


$$\ddot{r}_{i}^{c}=\ddot{r}_{i}^{\,des}+k_{d,i}\left(\dot{r}_{i}^{\,des}-\dot{r}_{i}
ight)+k_{p,i}\left(r_{i}^{des}-r_{i}
ight)$$

Putting (10) in (9)

$$u_1 = mg + m\ddot{r}_3^{\ c} = mg - m\left(k_{d,3}\dot{r}_3 + k_{p,3}\left(r_3 - r_{3,0}
ight)
ight)$$
 (11)

Using (7) and (8), we find commanded
$$heta_c, \phi_c$$

$$\phi^{c} = rac{1}{g} (\ddot{r}_{1}^{\ c} \sin \psi_{0} - \ddot{r}_{2}^{\ c} \cos \psi_{0})$$
 (12) $\ddot{r}_{1}^{c} = \ddot{r}_{1}^{\ des} + k_{d,1} \left(\dot{r}_{1}^{\ des} - \dot{r}_{1}
ight) + k_{p,1} \left(r_{1}^{\ des} - r_{1}
ight)$
 $heta^{c} = rac{1}{g} (\ddot{r}_{1}^{\ c} \cos \psi_{0} + \ddot{r}_{2}^{\ c} \sin \psi_{0})$ (13) $\ddot{r}_{2}^{\ c} = \ddot{r}_{2}^{\ des} + k_{d,2} \left(\dot{r}_{2}^{\ des} - \dot{r}_{1}
ight) + k_{p,2} \left(r_{2}^{\ des} - r_{2}
ight)$

Using (12) and (13), we define

$$oldsymbol{u}_{2} = egin{bmatrix} k_{p,\phi}\left(\phi^{c}-\phi
ight)+k_{d,\phi}\left(p^{c}-p
ight)\ k_{p, heta}\left(heta^{c}- heta
ight)+k_{d, heta}\left(q^{c}-q
ight)\ k_{p,\psi}\left(\psi^{c}-\psi
ight)+k_{d,\psi}\left(r^{c}-r
ight) \end{bmatrix}$$

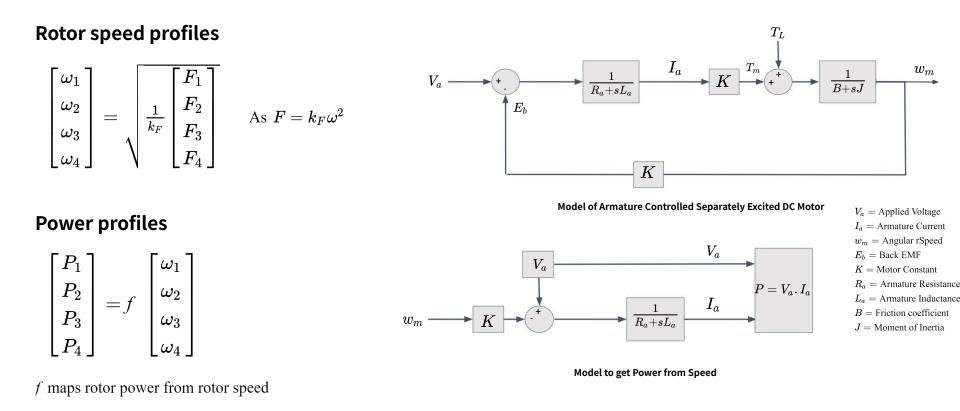
CONTROL LAW FOR ATTITUDE

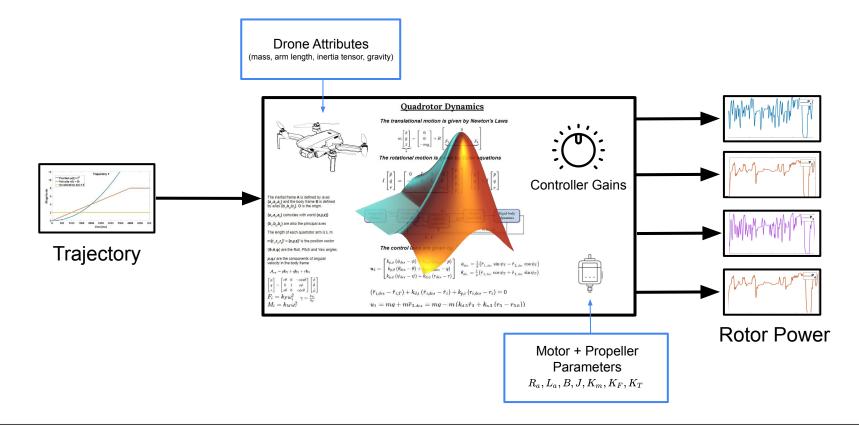
Quadrotor control

$$egin{aligned} oldsymbol{u}_2 = egin{bmatrix} k_{p,\phi} \left(\phi^c - \phi
ight) + k_{d,\phi} \left(p^c - p
ight) \ k_{p,\phi} \left(\theta^c - heta
ight) + k_{d, heta} \left(q^c - q
ight) \ k_{p,\psi} \left(\psi^c - \psi
ight) + k_{d,\psi} \left(r^c - r
ight) \end{bmatrix} = egin{bmatrix} 0 & l & 0 \ -l & 0 & l & 0 \ \gamma & -\gamma & \gamma & -\gamma \end{bmatrix} egin{bmatrix} F_1 \ F_2 \ F_3 \ F_4 \end{bmatrix} \end{aligned}$$

- - **-**

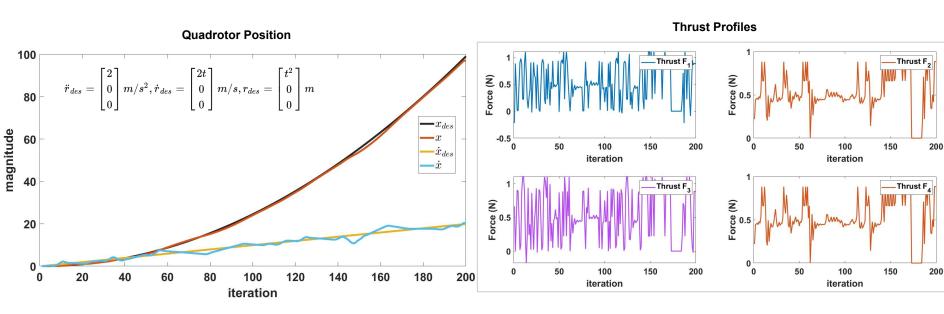
$$egin{bmatrix} u_{2,1} \ u_{2,2} \ u_{2,3} \end{bmatrix} = egin{bmatrix} l(F_2-F_4) \ l(F_3-F_1) \ \gamma(F_1-F_2+F_3-F_4) \end{bmatrix} egin{array}{c} ext{(15)} \ ext{(16)} \ ext{(17)} \end{pmatrix}$$


from (14),(15),(16),(17)

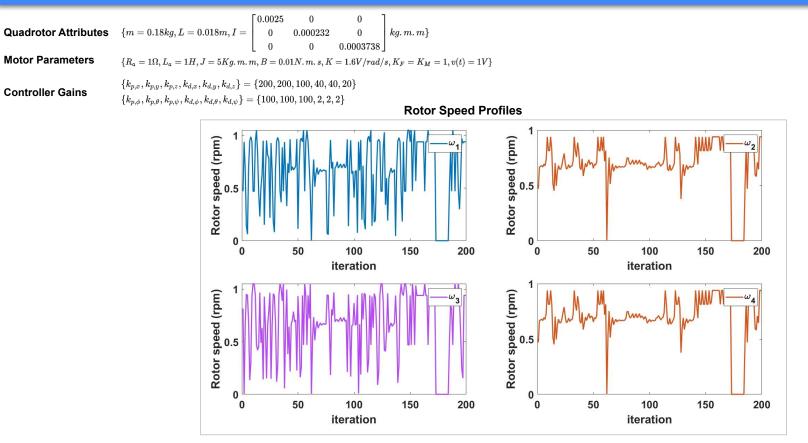

$$egin{bmatrix} F_1\ F_2\ F_3\ F_4 \end{bmatrix} = egin{bmatrix} rac{1}{4} & 0 & -rac{1}{2} & rac{1}{4} \ rac{1}{4} & rac{1}{2} & 0 & -rac{1}{4} \ rac{1}{4} & rac{1}{2} & rac{1}{2} & rac{1}{4} \ rac{1}{4} & -rac{1}{2} & 0 & -rac{1}{4} \ rac{1}{2} & rac{1}{2} & rac{1}{4} \ rac{1}{2} & rac{1}{2} & rac{1}{2} \ rac{u_{2,1}}{l} \ rac{u_{2,2}}{l} \ rac{u_{2,3}}{\gamma} \end{bmatrix}$$

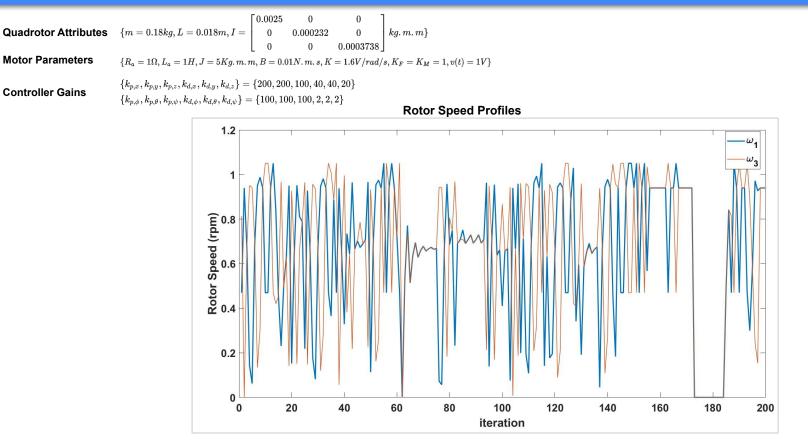
 $egin{aligned} \ddot{r}_1 &= g \left(heta \cos \psi_0 + \phi \sin \psi_0
ight) \ \ddot{r}_2 &= g \left(heta \sin \psi_0 - \phi \cos \psi_0
ight) \ \ddot{r}_3 &= rac{1}{m} (\underbrace{F_1 + F_2 + F_3 + F_4}_{u_1}) - g \end{aligned}$

$$\begin{bmatrix} \ddot{\boldsymbol{\varphi}} \\ \ddot{\boldsymbol{\theta}} \\ \ddot{\boldsymbol{\psi}} \end{bmatrix} = \mathbb{I}^{-1} \underbrace{\begin{bmatrix} 0 & l & 0 & -l \\ -l & 0 & l & 0 \\ \gamma & -\gamma & \gamma & -\gamma \end{bmatrix}}_{u_2} \begin{bmatrix} F_1 \\ F_2 \\ F_3 \\ F_4 \end{bmatrix}$$


Power Model of a quadrotor Motor Power

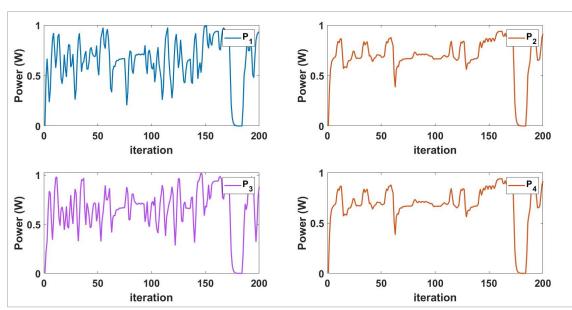
Power Calculations


0.00250 0 ${m = 0.18 kg, L = 0.018 m, I = }$ **Quadrotor Attributes** 0.000232 0 kg.m.m0 0.00037380 0 **Motor Parameters** $\{R_a = 1\Omega, L_a = 1H, J = 5Kg. m. m, B = 0.01N. m. s, K = 1.6V/rad/s, K_F = K_M = 1, v(t) = 1V\}$ $\{k_{p,x},k_{p,y},k_{p,z},k_{d,x},k_{d,y},k_{d,z}\}=\{200,200,100,40,40,20\}$ **Controller Gains** $\{k_{p,\phi}, k_{p,\theta}, k_{p,\psi}, k_{d,\phi}, k_{d,\theta}, k_{d,\psi}\} = \{100, 100, 100, 2, 2, 2\}$

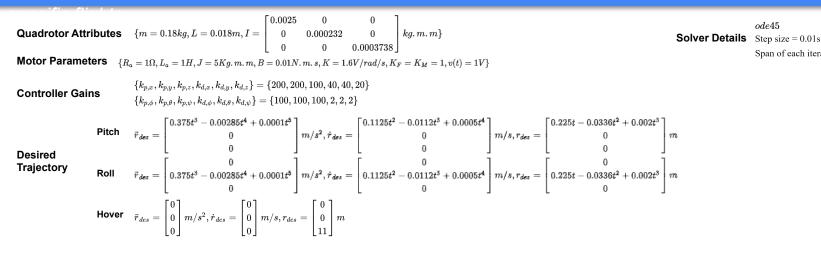

ode45 Solver Details Step size = 0.01s Span of each iteration = 0.05s

Annual Progress Seminar - Paraj Ganchaudhuri | 18 May 2023

Power Calculations


Power Calculations

Power Calculations


0.00250 0 **Quadrotor Attributes** ${m = 0.18 kg, L = 0.018 m, I = }$ 0.000232kg.m.m0 0 0.0003738 0 0 **Motor Parameters** $\{R_a = 1\Omega, L_a = 1H, J = 5Kg. m. m, B = 0.01N. m. s, K = 1.6V/rad/s, K_F = K_M = 1, v(t) = 1V\}$ $\{k_{p,x}, k_{p,y}, k_{p,z}, k_{d,x}, k_{d,y}, k_{d,z}\} = \{200, 200, 100, 40, 40, 20\}$ **Controller Gains**

 $\{k_{p,\phi},k_{p, heta},k_{p,\psi},k_{d,\phi},k_{d, heta},k_{d,\psi}\}=\{100,100,100,2,2,2\}$

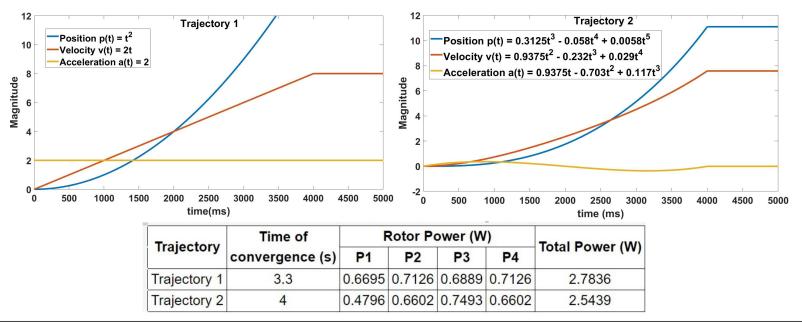
Power Profiles

Power consumption comparison based on maneuver

RMS values of Thrust, Rotor Speed and Power

Maneuver	Thrust (N)			Rotor Speed (RPM)			Rotor Power(W))	Total Power (W)	Difference(%)		
	F1	F2	F3	F4	ω1	ω2	ω3	ω4	P1	P2	P3	P4		
Hover	0.4405	0.4405	0.4405	0.4405	0.6594	0.6594	0.6594	0.6594	0.6551	0.6551	0.6551	0.6551	2.6204	-
Pitch	0.5177	0.5181	0.5571	0.5181	0.6994	0.7151	0.7304	0.7151	0.6846	0.7117	0.7203	0.7117	2.8283	8
Roll	0.5063	0.5720	0.5063	0.5442	0.7048	0.7150	0.7048	0.6984	0.7019	0.6977	0.7019	0.6761	2.7776	6

ode45


Span of each iteration = 0.05s

Path Planning

Power consumption comparison based on trajectories

 $\{k_{p,\phi}, k_{p,\theta}, k_{p,\psi}, k_{d,\phi}, k_{d,\theta}, k_{d,\psi}\} = \{100, 100, 100, 2, 2, 2\}$

Objective of the quadrotor is to reach 11m along the x-axis

Field Experiments using DJI Air 2 Power Data

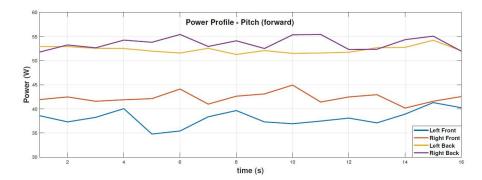


Fig 4 - DJI Air 2 forward flight with a forward pitch

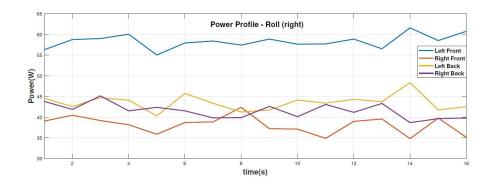


Fig 5 - DJI Air 2 forward flight with a right roll

	M	Total				
Maneuver	Left Front	Right Front	Left Back	Right Back	Total Power(W)	
Hover	38.01	42.16	33.37	31.8	145.34	
Pitch(F)	38.09	42.26	52.32	53.53	186.2	
Pitch(B)	49.31	52.76	24.76	28.05	154.88	
Roll(L)	34.26	57.04	36.03	43.67	171	
Roll(R)	58.12	38.22	43.67	41.72	181.73	
Ascend	57.24	50.36	42.2	40.7	190.5	
Descend	42.7	35.3	31.7	27.09	136.79	
Ascend+Pitch(B)	69.59	70.21	39.33	39	218.13	
Descend+Pitch(F)	27.87	30.73	31.06	31.84	121.5	
Yaw(CL)	40. <mark>1</mark> 4	45.81	34.66	34.58	155.19	

Table 2 : Avg Power for various maneuvers using DJI Air 2

Figure 6 - DJI Air 2 drone during hover Location - EEE Department, IIT Guwahati

Table 3 - DJI Air 2 specifications

Mass	570 gms
Dimension	183x253x77 mm
Max Flight time	34 minutes
Battery Capacity	3500 mAh
Maximum Range	18.5 kms
Max Ascend Velocity	4 m/s
Max Horizontal Velocity	12 m/s (N Mode) 19 m/s (S Mode)

Field Experiments using DJI Air 2 Power comparison with a power model in [1]

Induced Power

$$P_i = k_1 T \left(\sqrt{rac{T}{2
ho A} + \left(rac{V_{vert}}{2}
ight)^2} + rac{V_{vert}}{2}
ight)$$

Profile Power

$$egin{aligned} P_p &= \sum_{i=1}^M P_{p,i} = \sum_{i=1}^M \left(rac{N imes imes imes imes imes imes R^4}{8} \omega_i^{\ 3} \left(1 + {\mu_i}^2
ight)
ight) \ P_p &= \sum_{i=1}^M \left(rac{N imes imes imes imes imes imes R^4}{8} \left(\omega_i^{\ 3} + \left(rac{V_{air} cos(lpha_i)}{R}
ight)^2 \omega_i
ight)
ight) \end{aligned}$$

Parasitic Power

$$P_{par} = rac{1}{2} C_d imes
ho imes A_{quad} imes V_{air}{}^3$$

Experiments

$$egin{aligned} P_{exp1} &= P_{i,hover}(mg,0) + P_p(mg,0) = (c_1+c_2)(mg)^{rac{3}{2}} \ P_{exp2} &= P_i(mg,V_{vert}) + P_p(mg,0) \ P_{exp3} &= P_i(T,0) + P_p(T,V_{air}) + P_{par}(V_{air}) \ &= (c_1+c_2)T^{rac{3}{2}} + c_3(V_{air}coslpha)^2T^{rac{1}{2}} + c_4V^3_{air} \ &\simeq (c_1+c_2)T^{rac{3}{2}} + c_4V^3_{air} \end{aligned}$$

[1] Liu et. al., "A power consumption model for multirotor small unmanned aircraft systems," in 2017 ICUAS. IEEE, pp. 310–315.

$$egin{aligned} P_{p,hover,i} &= rac{N imes c imes c_d imes
ho imes R^4}{8} \omega_i{}^3 \ \mu_i &= rac{V_{air} cos(lpha_i)}{\omega_i R} \end{aligned}$$

T: Total thrust applied by the UAV k_1 : Ratio of actual airflow to idealised uniform airflow ρ : Density of air A: Total propeller area Vvert : Vertical velocity of the UAV Vair : Horizontal velocity of the UAV N: Total number of blades in a single propeller M: Total number of rotors c_d : Drag coefficient of the blade c: Blade chord width C_d : Drag coefficient of vehicle body R: Radius of the propeller blade ω_i : Angular speed of i^{th} rotor μ_i : Advance ratio for propellers in rotor *i* α_i : Angle of attack for propeller disks in rotor *i* Vwind : Velocity of wind head on to the UAV Vground : Ground velocity of the UAV A_{auad} : Cross sectional area of the vehicle when against wind c_l : Lift coefficient

Field Experiments using DJI Air 2

Power comparison with a power model in [1]

$$egin{aligned} P_{exp1} &= P_{i,hover}(mg,0) + P_p(mg,0) = (c_1+c_2)(mg)^{rac{3}{2}} \ P_{exp2} &= P_i(mg,V_{vert}) + P_p(mg,0) \ P_{exp3} &= P_i(T,0) + P_p(T,V_{air}) + P_{par}(V_{air}) \ &= (c_1+c_2)T^{rac{3}{2}} + c_3(V_{air}coslpha)^2T^{rac{1}{2}} + c_4V^3_{air} \ &\simeq (c_1+c_2)T^{rac{3}{2}} + c_4V^3_{air} \end{aligned}$$

Power model coefficients for DJI Air 2

Parameter	Value	Parameter	Value		
m	0.57 kg	c2	9.02 (m/kg) ^{1/2}		
g	9.8 m/s2	c3	~0		
k1	2.4795	c4	-0.033611 kg/m		
k2	1.2346 (kg/m) ^{1/2}	c5	-0.0048941 Ns/m		
c1	1.99 (m/kg) ^{1/2}	c6	~0		

[1] Liu et. al., "A power consumption model for multirotor small unmanned aircraft systems," in 2017 ICUAS. IEEE, pp. 310–315.

Field Experiments using DJI Air 2

Power comparison with a power model in [1]

Maneuver	(Horizontal velocity, Vertical Velocity) (m/s, m/s)	Total Power (W)	Power from Liu et al. model (W)	Power Difference (W)	% Power difference	
Hover	(0,0)	145.34	145.35	-0.01	-0.00	
Pitch(F)	(11.9,0)	186.2	186.86	-0.66	-0.35	
Pitch(B)	(11.98,0)	154.88	187.86	-32.98	-21.29	
Roll(L)	(12.01,0)	171	188.25	-17.25	-10.08	
Roll(R)	(11.1,0)	181.73	177.77	3.96	2.18	
Ascend	(0,4.14)	190.5	186.18	4.32	2.27	
Descend	(0,-3.02)	136.79	131.87	4.92	3.59	
Ascend + Pitch(B)	(8.61,3.99)	218.13	203.33	14.8	6.78	
Descend + Pitch(F)	(11.1,-4.9)	121.5	152.87	-31.37	-25.81	
Yaw(CCL)	(0,0)	156.15	145.35	10.8	6.91	
Yaw(CL)	(0,0)	155.19	145.35	9.84	6.34	
Pitch(F)	(16.38,0)	297.44	273.52	23.92	8.04	
Pitch(B)	(16.82,0)	230.9	285.78	-54.88	-23.76	
Roll(R)	(18.4,0)	262.96	336.06	-73.1	-27.79	
Roll(L)	(18.94,0)	244.67	355.58	-110.91	-45.33	
Ascend + Pitch(B)	(15.14,4.02)	275.64	310.55	-34.91	-12.66	
Descend + Pitch(F)	(17.95,-5)	187.37	270.18	-82.81	-44.19	

Actual Power vs Power model estimate from [1]

[1] Liu et. al., "A power consumption model for multirotor small unmanned aircraft systems," in 2017 ICUAS. IEEE, pp. 310–315.

Conclusion


- Power model based on maneuvers helps in estimating instantaneous power in each rotor.
- The model helps us differentiate trajectories based on power.
- Field experiments on DJI Air 2 drone reveals the power differences with various maneuvers.

Future Work

- Power model based on non-linear dynamics of the quadrotor.
- Calculating parameters of a drone to test our power formulation.
- Mapping rotor speed with current for a practical quadrotor motor.
- Formulating a realistic path planning scenario.
- Multi-agent setup.

Publications

• Paraj Ganchaudhuri, Chayan Bhawal, "Power consumption of a quadrotor based on maneuvers," *to be published in IEEE-GCON 2023*, 23-25 June 2023, Guwahati, India.

