
STATE OF THE ART REPORT

Path Planning of an Unmanned Aerial Vehicle

(UAV) with Minimal Energy Consumption

Submitted by

Paraj Ganchaudhuri

Roll No.: 206102023

Under the guidance of

Dr. Chayan Bhawal

Department of Electronics and Electrical Engineering

Indian Institute of Technology Guwahati

Guwahati - 781039, Assam, India

April 2022



Abstract

Unmanned Aerial Vehicle (UAV) or drone constitutes a new workforce in modern
transportation system for delivery and surveilance operations. There are various other
use cases for an UAV but a fundamental drawback in its application is its limited flight
time. One of the well-known problem in this area is towards optimal path planning of an
UAV with minimal energy and or minimal time of operation. Energy/Power consumption
modeling of an UAV is a critical tool for evaluating path planning of an UAV. However,
there are multiple parameters that add to the power which is not easy to identify and
track in general and as a result, there are inaccuracies in the calculation of power. In
this research we make an attempt to map the dynamics/environment and maneuvers of
a drone to angular speeds of the rotors as rotors are the end consumers of power in an
UAV. Using the speeds, we try to obtain a power model which can calculate the energy
that will be required for a trip. The power model will also be able to track dynamic
uncertainties. We also intend to redesign a path planning algorithm that can handle
dynamically evolving environments and provide the operator with optimal routes even
when the UAV faces external disturbances or there is a change in objective of the UAV
in mid-flight.
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1 Introduction

Unmanned Aerial Vehicles (UAVs) or drones over the years have found widespread
application in the field of robotics viz., surveillance in remote areas, precision farming,
logistics, emergency responsiveness, etc. Such applications of UAVs have led to a massive
boom in the UAV market worldwide. In India, The Civil Aviation Ministry estimates
India’s drone sector to achieve a total turnover of Rs. 120-150 billion (US$ 1.63-2.04 bil-
lion) by 2026 [1]. The major areas where UAVs are projected to make massive footprints
are:

1. Surveillance - India has 15,106.7 km of international land border and a coastline
of 7,516.6 km that are of potential importance for surveillance. Present surveillance
infrastructure is both fuel-inefficient and manpower intensive. So, there is an immense
space yet to be filled by UAVs [2].

2. Precision Agriculture - India has arable lands with over 155 million hectares, and
it amounts to approximately $265 billion worth of revenue. UAVs can be an important
tool to provide leading-edge digital and precision agriculture technologies to farmers to
maximize the efficient use of water, fertilizer and pesticides and improve overall produc-
tivity, quality, and yield [3].

Such widespread applications have also led to a bureaucratic push in the country
to promote UAVs’ use in various sectors. Hence rules and regulations on licensing and
commercial use has been preferentially eased out [4].

Considering the importance of this industry, research into UAVs for various ap-
plications has been actively pursued by the research community[5]. Among the various
research areas on UAVs, in this project, we focus on the problem of path planning for
UAVs in a dynamically evolving environment with an emphasis on minimal energy con-
sumption.
One of the most sought-after features in most applications involving UAVs is to increase
flight time by decreasing the consumption of energy. Hence we perform path planning to
identify the path with minimum energy. To evaluate the energy comsumption of a path,
we require a power consumption model and in practical scenerious it is very tough to
derive a perfect model because there are multiple parameters at play which contribute to
power consumption. Also, these paramters are difficult to identify and track in general.
In most cases the power model can only capture straight line paths of UAVs with no role
of external disturbances(wind). Based on the available literature, different models results
different values of power for idetical UAV operations with identical hardwares. So, there
is no consensus in the available powoer modelings[6].
So here, in this project, we make an attempt to derive a power consumption model that
can translate the role of various parameters into fewer and most important ones which
will be easy to track and evaluate. We also aim to track the dynamic power consumptio
of the UAV with its various manuevers as well as map the power variations when there
are disturbances(wind).

With the help of a power formulation, we aim to calculate the energy that will be
consumed for a given trip/operation and perform path planning with some objectives.
In most cases, to the best of my knowledge, for a given objective, the trajectories for
each agent (say in parcel delivery) are computed offline. This approach does not factor in
the external uncertainties on the energy consumption modeling. Such uncertainties may
include communication delays, localization information loss (GPS-denied environment)
etc. In the middle of a flight, there might also be a change in objective for a UAV. Thus,
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research pertaining to path planning with a dynamically evolving environment/objective
is another problem we wish to address with this research.
This report is divided into two sections. At first we study various power consumption
models available in literature and find out significant research gaps. Then we introduce
a power model based on angular speeds of the rotors. Next we study about the various
path planning formalisms to achieve optimal paths for a given UAV operation.
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2 Power Consumption Modeling

The major parameters that affect power consumption of an UAV are summarised
below [6], [7], [8]

UAV Design Environment Drone dynamics Delivery operations

UAV weight Air density
Airspeed
(vertical and horizontal)

Payload weight

Number of rotors Gravity
Motion
(take-off/landing/
hover/levelled flight)

Size of payload

Number of blades
per rotor

Wind velocity
Acceleration/
Deacceleration

Drag coefficient of
payload

Total propeller area
Wind incident
angle

Roll/pitch/yaw angle Fleet size and mix

Blade chord length
Weather
(rain, snow etc.)

Angular speed of
rotors

Single/multi stop trip

Angle of attack of
propeller disk

Ambient temperature Flight angle
Delivery mode
(tether/landing/
parachute)

Advance ratio of
propeller

Regulations Flight altitude Area of service region

Size of rotors

Size of drone body

UAV body drag
co-efficients

Battery weight

Battery energy
capacity

Size of battery

Power transfer
efficiency

Maximum speed

Maximum payload

Lift-to-drag ratio

Delivery mechanism

Avionics
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2.1 Literature Survey on power consumption modeling

• D’Andrea in [9] provides an influential contribution to model power consumption
of an UAV by translating the fundamental flight principles of manned aircraft to
a model for the much smaller scale of unmanned aerial drones. [9] presents a
model using an integrated approach that combines aerodynamic and drone design
aspects into a single critical parameter: the lift-to-drag ratio r. The energy model
also includes a fixed component for avionics power. Using the fact that a high-end
lithium-ion battery has a specific power of 0.35 kW/kg, the paper proposes a metric
to obtain the required battery weight for a trip. The worst-case energy requirement
in kWh is formulated and economics i.e the average energy cost per kilometer is
also addressed. Lastly, the average battery cost per km is approximated for a trip
given a payload weight and flight velocity.

• Dorling et al. in [8] provides an equation for the power that is consumed by a
multirotor helicopter in hover as a function of the battery and payload weight. The
approach for this modeling is based on helicopter operations, with the assumption
that the power consumed during level flight, takeoff, or landing is approximately
equivalent to the power consumed while hovering as the power consumed by the
helicopter is often reduced due to translational lift, a phenomenon where air flow-
ing horizontally along the rotor generates additional lift. This power consumption
model does not consider the role of UAV speed. These authors also report field
experiments on a 3D Robotics ArduCopter Hexa-B hexacopter. and develop re-
gression parameters with small payloads.

• In [7], Liu et al. derive a power consumption model where power is distributed
into three components namely induced power, profile power, and parasitic power.
The power generated by the propellers to balance the weight of the UAV in flight
is represented by induced power. Profile power overcomes the rotational drag en-
countered by rotating propeller blades. The parasite power resists body drag when
there is relative translational motion between the vehicle and wind. These power
equations are derived analytically using aerodynamic principles and then encap-
sulated with fewer parameters. The values of these parameters are obtained by
conducting field tests on an IRIS+ UAV. A least-square fit for power vs payload
is also obtained. It is shown that ascending takes 9.8% more power than hovering,
and descending takes 8.5% less power than hovering.

• Kirchstein in [10] derives component-based model similar to [7] but specifically for
a drone delivery application. He describes characteristic power consumption cal-
culations for takeoff and ascent, steady level flight, descent, hovering, and landing.
The return trip is considered similar but without the payload. Kirchstein also com-
pares delivery with trucks versus UAVs in Berlin and shows that drone delivery
often requires more energy. The article also shows how wind and drone hovering
increase the power consumption of an UAV. It is concluded that in rural settings
with long distances between customers, UAV-based parcel delivery infrastructure
has comparable energy considerations to a delivery system with electric trucks.

• The authors in [11] studied a truck-drone hybrid delivery system. In this study,
they extend vehicle routing models to the hybrid delivery systems by taking into
account two important practical issues: the effect of parcel weight on drone energy
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consumption and restricted flying areas. The power consumption model is derived
from [8] and tweaked to obtain the flight time of an UAV for an operation. They
obtain a formulation where the variation in flight time is obtained based on the
variation in the payload. The model is tested against practical experiments on an
MK8-3500 standard UAV and it is claimed that the results are realistic.

• Tseng et al. in [12] uses a black-box modeling approach to obtain the power con-
sumption model of an UAV. Field experiments are performed by the researchers
considering the impact of various flight scenarios, payload weight and wind to study
how power consumption varies with them, and then a non-linear regression model
is presented. They obtain the power model where horizontal and vertical speed
and acceleration, as well as payload mass and wind speed, are the variables. It
is also mentioned that the error in estimation of power consumption in the field
experiments is within 0.4% of the original power consumption obtained from the
onboard sensors.

• In [13], Stolaroff et al. develops a two-component model based on the thrust re-
quired to balance the UAV weight and the parasite drag force. The power con-
sumption model is derived for hovering from helicopter dynamics like [8] and then
extended for steady flight for variation with significant velocity or in significant
wind. The minimum power requirement then changes somewhat depending on the
airspeed and incident angle at which the UAV traverses. This model is used to as-
sess the energy use and life cycle greenhouse gas (GHG) emissions for small drones
with short ranges (4 km) delivering from warehouses. Results indicate that small
drones are likely to provide lower lifecycle GHG emissions than conventional deliv-
ery trucks, but that benefits depend on the carbon intensity of electricity and the
size of the drones.

• Zhang et. al in [6] studies the significant power models available in literature and
reviews, classifies the drone energy, consumption models. They document very wide
variations in the modeled energy consumption rates resulting from differences in the
scopes and features of the models, the specific designs of the drones; and the details
of their assumed operations and uses. They also try to obtain the optimum value
of payload weight and flight speed that would minimize the energy consumed per
unit distance on a few standard energy consumption models.

We have collated the results and have elaborated various types of power consumption
model in the next section

2.2 Types of Power Consumption Modeling

There are various approaches available in the literature for modeling the power
consumed by an UAV. Different approaches of modeling along with some significant
Power Consumption Model(PCM) are studied below.

2.2.1 Component based power modeling

For such a modeling, the flight paths are assumed to consist of a vertical-take-off
segment, hover, a combination of horizontal straight line segments for levelled flights,
and a vertical-landing segment. Based on [7], power consumed by a multi-rotor UAV is
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distributed into three components, namely induced power (Pi), profile power (Pp) and
parasitic power (Ppar).
The following symbols will be required to define the different notions of power in compo-
nent based modeling

• T : Total thrust applied by the UAV

• k1 : Ratio of actual airflow to idealised uniform airflow

• ρ : Density of air

• A : Total propeller area

• Vvert : Vertical velocity of the UAV

• Vair : Horizontal velocity of the UAV

• N : Total number of blades in a single propeller

• M : Total number of rotors

• cd : Drag coefficient of the blade

• c : Blade chord width

• Cd : Drag coefficient of vehicle body

• R : Radius of the propeller blade

• ωi : Angular speed of ith rotor

• µi : Advance ratio for propellers in rotor i

• αi : Angle of attack for propeller disks in rotor i

• Vwind : Velocity of wind head on to the UAV

• Vground : Ground velocity of the UAV

• Aquad : Cross sectional area of the vehicle when against wind

• cl : Lift coefficient

1. Induced Power - The induced power is the power required to keep the UAV afloat.
The modeling of induced power is derived from disk actuator theory [14].

Pi = k1T

√ T

2ρA
+

(
Vvert

2

)2

+
Vvert

2

 (1)

2. Profile Power - The profile power is the power required to overcome the rotational
drag encountered by rotating propeller blades. The profile power consumed by a
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rotating rotor blade is derived from blade element theory [15]. The profile power
for the ith rotor while the UAV is hovering is given by

Pp,hover,i =
N × c× cd × ρ×R4

8
ωi

3 (2)

During horizontal flight, the profile power becomes

Pp,i = Pp,hover,i
(
1 + µi

2
)

(3)

where,

µi =
Vaircos(αi)

ωiR
(4)

In addition, all angles of attack are identical. Then the total profile power is

Pp =
M∑
i=1

Pp,i =
M∑
i=1

(
N × c× cd ×R4

8
ωi

3
(
1 + µi

2
))

(5)

Pp =
M∑
i=1

(
N × c× cd × ρ×R4

8

(
ωi

3 +

(
Vaircos(αi)

R

)2

ωi

))
(6)

3. Parasitic Power - The parasite power is the power required to resist body drag when
there is relative translational motion between the vehicle and wind. The parasite
power is obtained by assuming that the body drag (Fpar) is proportional to airspeed
(Vair) squared.

Ppar =
1

2
Cd × ρ× Aquad × Vair3 (7)

These power equations are applicable only when the UAV is at steady state, i.e in force
equilibrium. Figure 1 shows all the external forces, where

• L is the lift

• D is the parasitic drag

• α is the angle of attack

Figure 1: The UAV under force equilibrium in horizontal and vertical directions
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Therefore, the thrust at steady state is computed from

T =

√
(mg − L)2 +D2 (8)

The lift as described in [7] is given by

L = c5(Vaircosα)2 + c6T (9)

where c5 = N×c×cl×ρ×R
4

and c6 = k3
N×c×cl×ρ×R3

6
.

D = c4V
2
air (10)

where c4 =
Cd×ρ×Aquad

2

Theoretically, solution for T can be obtained by solving a complicated quadratic equation,
by substituting equation eq(9) into eq(8). However, we are only interested in modeling
lift as a function of horizontal airspeed. It allows us to match the thrust reduction
observed in horizontal flight. Therefore, it is further assumed that c6 = 0, to simplify the
identification process.

Simplified analytical expressions for Power The power consumed by an UAV
needs to be calculated using the powers that are described above. From equations eq(1),
eq(6) and eq(7) it is evident that there are a lot of parameters at play and it is not
convenient to have an exact estimation of all the parameters during every operation. The
parameters that are dependent on an UAV operation are Thrust T which is a measure of
the weight carried by the UAV, Vair, the horizontal speed and Vvert, the vertical speed of
the UAV.
So a power equation needs to be formulated based on these variables. Accordingly, eq(1),
eq(6) and eq(7) can be encapsulated as

Pi(T, Vvert) = Pi = k1T

Vvert
2

+

√
T

k2
2 +

(
Vvert

2

)2
 (11)

For a multi-rotor UAV, it is common to assume that the thrust generated is proportional
to the angular speed squared [16], or Ti = k3ωi

2 where, k3 is a scaling factor converting
from rotor angular speed ω to thrust T .

Pp(T, Vair) = c2T
3
2 + c3(Vaircosα)2T

1
2 (12)

Ppar = c4Vair
3 (13)

where, k2 =
√

2ρA
and

Vair = ||Vair|| = ||Vground − Vwind|| (14)

T =

√
(mg − (c5(Vaircosα)2 + c6T ))2 + (c4Vair

2)2 (15)

While hovering, Vvert = 0 and the induced power is reduced to

Pi,hover(T ) =
k1

k2

T
3
2 = c1T

3
2 (16)

Therefore, k1, k2, c1, c2, c3, c4, c5 are the parameters that are to be identified
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Model Identification using experiments From equation eq(11) to eq(15), the power
components are almost linear functions of payload and airspeed. To identify the un-
known coefficients, three simple experiments are performed, namely hover, steady-state
ascend/descend, and cyclic straight-line mission, on a UAV the power modeling of which
we are interested in. In each experiment, the total power drawn is computed by multi-
plying voltage and current measurements from an onboard power module fitted in the
UAV.

1. Experiment 1 - Hover - In this experiment, the UAV is loaded with different payloads
and made to hover. The total power is given by equation eq(17) from which (c1+c2)
can obtained . A least square fit of power with varying payload weight can also be
derived.

Pexp1 = Pi,hover(mg, 0) + Pp(mg, 0) = (c1 + c2)(mg)
3
2 (17)

2. Experiment 2 - Steady State ascend/descend - In this experiment, the UAV is
commanded to ascend and descend at constant vertical speed between a defined
altitude range without payloads. The total power is given by equation eq(18).
Together with Experiment 1, there are four equations (hover, ascend, descend, and
c1 = k1/k2), and four unknown parameters (k1, k2, c1, and c2).

Pexp2 = Pi(mg, Vvert) + Pp(mg, 0) (18)

3. Experiment 3 - Cyclical straight lines - The goal of this experiment is to quantify
the effect of parasite drag. The total power is given by equation eq(19), with the
thrust T , and lift L and drag D defined by equation eq(8) and eq(9), respectively.
The parameter c3 is assumed to be 0 to simplify the identification process

Pexp3 = Pi(T, 0) + Pp(T, Vair) + Ppar(Vair) (19)

= (c1 + c2)T
3
2 + c3(Vaircosα)2T

1
2 + c4V

3
air (20)

' (c1 + c2)T
3
2 + c4V

3
air (21)

Based on the above experiments, the complete powewr consumption modeling of the UAV
can be derived. As per the expermients conducted in [7] on an IRIS+ drone from 3D
Robotics, the power consumption modeling shows a percentage devation of 10.7%, 2.2%
and 16.5% in power during take-off, landing and steady state flight respectively.

2.2.2 Power Modeling Based on aerodynamic aspect

Raffaello D’Andrea in [9] provides a seminal contribution in modeling drone energy
consumption by translating the fundamental flight principles of manned aircraft to a
model for the much smaller scale of unmanned aerial drones. A power consumption
model is obtained using an integrated approach that combines aerodynamic and drone
design aspects into a single critical parameter: the lift-to-drag ratio r
The power consumed in kW can be approximated as

P =
(mp +mv)v

370ηr
+ p (22)

where
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• mp : payload mass, in kg

• mv : vehicle mass, in kg

• r : lift-to-drag ratio

• η : power transfer efficiency for motor and propeller

• p : power consumption of electronics, in kW

• v : cruising velocity, in km/h

The power consumed by such a formulation is a function of the total mass of the UAV and
the velocity with which it flies. Using this simple formulation one can address the eco-
nomics of flight very easily. The average energy cost per kilometer can be approximated
by

c

e

(
(mp +mv)v

370ηr
+
p

v

)
(23)

where,

• c : cost of electricity in $/kW.h

• e : charging efficiency

2.2.3 Power Modeling based on Helicopters

The power consumption equations for a multi-rotor UAV are obtained by extending
the power consumption model that is available for single rotor helicopters [17].
In this formulation, an equation for the power consumed by a multirotor helicopter is
derived in hover as a function of its weight. It is shown that the power it consumes is ap-
proximately linearly proportional to the weight of its battery and payload under practical
assumptions. The power consumed by a multirotor drone is derived during hover, but
not during flight, takeoff, or landing. In flight, the power consumed by the helicopter is
often reduced due to translational lift [18], a phenomenon where air flowing horizontally
along the rotor generates additional lift.
The average power during hover is consequently an upper bound on the average power
during flight. We assume that the power consumed during takeoff and landing is, on
average, approximately equivalent to the power consumed during hover.

Using [17], the power P ∗ is calculated in Watts for a single rotor helicopter in
hover, with the thrust T in Newtons, fluid density of air ρ in kg/m3, and the area ζ of
the spinning blade disc in m2 using

P ∗ =
T

3
2

√
2ρζ

(24)

where the Thrust T = (W +m)g and W is the frame weight in kg, m is the battery and
payload weight in kg.
Usinh eq(24), the power for an n-rotor UAV is derived assuming that each rotor carries a
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weight of m′ = m/n for batteries and payload and a frame weight of W ′ = W/n meaning
that the power is consumed by a single rotor. Therefore,

P ′ = (W ′ +m′)
3
2

√
g3

2ρζ
(25)

So, the power consumed by all the n rotors is given by

P = nP ′ = (W +m)
3
2

√
g3

2ρζn
(26)

Note : The inverse relationship between P and n seen in eq(26) is a result of n increasing
the effective disc area of the propeller blades.
The linear approximation of the n-rotor UAV power consumption eq(26) can be expressed
as

p(m) = αm+ β (27)

where, α represents the power consumed per kilogram of battery and payload weight m
and β is the power required to keep the quadopter frame in the air.

The authors in [8] have obtained (as shown in fig.2) that eq(26) closely fits eq(27)
assuming a 3D Robotics ArduCopter Hexa-B hexacopter(as shown in fig.3) where n = 6,
ρ = 1.204 kg/m3, ζ = 0.2 m2, and W = 1.5 kg. Applying a linear regression to eq(26)
for m = 0–3 kg in increments of 0.001 kg results in α = 46.7 W/kg and β = 26.9 W . The
linear approximation eq(27) closely fits the exact equation eq(26), with a mean percent
error of 3.1% and the largest difference being 6.3 W.

Figure 2: Linear approximation eq(26) fitted to the power consumption model eq(27)
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Figure 3: a 3D Robotics ArduCopter Hexa-B hexacopter

2.2.4 Power Modeling using an extension of Helicopter

This power consumption modeling is based on the fact that UAVs expend energy to
fight gravity and to counter drag forces due to forward motion and wind [13]. The UAV’s
control software adjusts the speed of each rotor to achieve the thrust and pitch necessary
to stay aloft and travel forward at the desired velocity. The total required thrust by:

T = (mbody +mbatt +mpackage)g + Fdrag (28)

where mbody, mbatt, mpackage are the masses of the UAV body, battery and package(if
present) respectively. Fdrag is the total drag force acting on the UAV.
The pitch angle (α) for steady flight is calculated from

α = tan−1

(
Fdrag

(mbody +mbatt +mpackage)g

)
(29)

The drag force is estimated piecewise by the formulae

Fdrag =
∑
i

1

2
ρva

2CDiAi (30)

where,

• v : Velocity of the UAV

• va : Air speed

• ρ : Air density

• CDi : Drag co-efficient of the ith component

• Ai : Projected area of the ith component

The drag coefficient for a quadrotor UAV is determined empirically using the drone’s
onboard pitch measurement while flying at various velocities

CD =
2mbody × g × tan(α)

ρ× va2Abody
(31)
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The theoretical minimum power depends on the area swept by the rotors. In general,
larger propellers are more efficient because the larger swept area allows them to achieve
a given thrust at lower air velocity. However, they are less responsive because they have
greater inertia. In addition, rotors must be spaced not to interfere with each other. These
factors limit the rotor size.
For n rotors of diameter D, the theoritical minimum power to hover is [17]

Pmin,hover =
T

3
2√

1
2
πnD2ρ

(32)

When the UAV moves at significant velocity or in significant wind, the minimum power
requirement changes somewhat depending on the air speed and incident angle. The
minimum power with forward motion can be calculated from conservation of momentum.
Adapting from Hoffman et al. in [19], the power is given by:

Pmin = T (vsinα + vi) (33)

where vi is the induced velocity required for a given thrust and can be found by the
solution to the implicit equation

vi =
2T

πnD2ρ
√

(vcosα)2 + (vsinα + vi)2
(34)

The theoretical minimum power is corrected by the overall power efficiency of the UAV,
η, to get expended power:

P = Pmin/η (35)

η is determined empirically for the quadcopter model. Using eq(35), and the velocity of
the UAV, we can easily calculate the power required per unit distance and the economics
of the flight.

2.2.5 Power Modeling based on flight experiments using Regression

This is a class of modeling where the power consumption model of an UAV is
designed emperically from field experiments. The UAV is subjected to various flight
maneuvers and oprations and a power/energy expression is captured out of those ma-
neuvers/operations using regression. The authors in [12] have derived a 9 variable power
consumption model by performing various experiments on a commercial drone 3DR Solo.

To understand the factors that determine the energy consumption of a UAV, the fol-
lowing factors are considered for obtaining empirical data:

• Impact of Motion: The motions of a UAV can be divided into three types: hovering,
horizontal moving and vertical moving. The energy consumption of each type of
motion is studied.

• Impact of Weight: Typical UAVs carry payloads, such as camera equipment or
parcels. The impact of different weights of payloads.
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• Impact of Wind: The major environmental factor that affects the UAV profile is
wind, including wind direction and speed. Wind may aid the energy consumption
in some cases, as well as incurring resistance to the movement in other cases. We
study the energy consumption of the test UAV in various wind conditions.

The experiments in [12] are described below

1. Impact of motion

• Experiment 1: The test UAV hovers in the air without any movement in this
experiment. The drone may slightly drift around the takeoff location due to
deviation error of GPS modules. This experiment shows the baseline power
consumption of a flying drone. From the recorded data, it is observed that the
UAV can maintain a steady altitude with steady power consumption.

• Experiment 2: The test UAV is made to ascend and descend continuously in
a repeated fashion in this experiment. The barometer of the UAV shows the
altitude data. Time series is used to compute the vertical acceleration and
speed of the drone. Large power fluctuations are observed due to repeated
vertical movements. It is also seen that the power consumption increases
when the UAV ascends.

• Experiment 3: The test UAV moves horizontally without altering its altitude
in this experiment. The GPS data comprises of speed and course angle of the
drone. The average wind speed and direction is also gathered using a wind
speed meter during the experiment. Smaller power fluctuations are observed
due to horizontal movements. We also observe the idle power consumption of
the drone between the two experiments

Fig. 4 depicts the recorded data traces of the three experiments.

Figure 4: Motion and battery power consumption of the test drone.

2. Impact of weight
Several experiments are carried out with different weights of payloads on the UAV
to obtain empirical data. The drone is set to hover in the air without any movement
to obtain the corresponding baseline power consumption as is seen in fig.5. It is
seen that the power consumption increases with increasing payload
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Figure 5: Battery power consumption of the test drone with different payload weights.

3. Impact of wind
Several experiments under different wind conditions: headwind by flying against
the direction of wind, and tailwind by flying along the direction of wind. The
wind directions and average speeds are measured using a wind speed meter for each
experiment. Once the wind direction is determined, the drone is set to fly into
a headwind or tailwind at maximum speed (18 km/h). Fig.6 depicts the battery
power consumption of the drone under different wind conditions. Smaller power
consumption is observed when flying into headwind, which is due to the increasing
thrust by translational lift.

Figure 6: Battery power consumption of the test drone under different wind conditions.

Power Consumption Model using Regression A linear blackbox model of energy
consumption for the UAV estimated by a number of measurement parameters is described
by the following linear equation:

P̃ =

β1

β2

β3

T  || ~vxy||
|| ~axy||

|| ~vxy|||| ~axy||

+

β4

β5

β6

T  ||~vz||
||~az||
||~vz||||~az||

+

β7

β8

β9

T


m
|| ~vxy||
|| ~wxy||

1

 (36)

where

• ~vxy and ~axy are the speed and acceleration vectors describing the horizontal move-
ment of the UAV.

• ~vz and ~axy are the speed and acceleration vectors describing the vertical movement
of the drone.
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• m is the weight of payload.

• ~wxy is the vector of wind movement in the horizontal surface.

• β1, ...β9 are the coefficients and ||~v|| denotes the magnitude of a vector.

β1, ...β9 is estimated by the standard regression method, if sufficient measurement data
is collected. Assuming the uniform conditions (e.g. speed, wind) within a period of
duration D, the total energy consumption of the drone is estimated by P̃D.

2.3 Research Gap

1. An UAV design combines the attributes of airplanes and helicopters. While air-
planes are designed to travel long distances efficiently, helicopters are designed to
hover efficiently [10]. In most cases, the power consumption modeling is derived
from hovering action in Helicopters [14] as evident from the works done in [9], [13],
[8], [11]. Some works like [13] have extrapolated the dynamics of hovering to cap-
ture the power consumption during leveled flight with constant velocity. An UAV
operation involves stages of leveled flight, so deriving power from hovering and then
extrapolating it for the entire flight can be a reason why the power consumption
model cannot accurately capture the total power that is expended during an UAV
operation.

2. There is a consideration where the power consumed during hover is an upper bound
to the power consumed for other instances of the flight i.e take-off/landing/leveled
translational motion etc [8]. This is based on the phenomenon of translational lift
[18], a phenomenon that occurs when the UAV is in a horizontal motion and air
flowing horizontally along the rotor generates additional lift. This intuition is not
ideally true as the UAV is not at the same attitude for the entire duration of the
flight and hence the rotors does not cross the air horizontally leveled at all instances.
This consideration can be a reason for the inaccuracy in a power consumption model
of an UAV.

3. In literature, none of the power consumption models that are designed analytically
gives an optimum horizontal velocity that would minimize the power consumption
for an UAV during leveled flight. The work done in [6] obtains the value of that air-
speed intuitively and with rigorous flight tests. Moreover solution for an optimum
vertical velocity during take-off/landing, and an optimum angle for ascend/desced
can also be looked for. In literature, a standard angle for ascend/descend is con-
sidered as 45o [10] but it is not verified if such an angle minimizes the power con-
sumption.

4. Based on the literature surveyed, there is a wide variation in the power models with
divergent power consumption values for essentially the same UAV operation. As
seen in [6], the same UAV with the same operating settings shows wide variations
in Epm(Energy consumed per unit distance) values and range values with different
power consumption models. These differences give a strong implication that we
don’t have an accurate or a benchmark power consumption model. The differences
are because of different scopes and features of different models, different designs of
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UAVs being modeled and different assumptions in operating conditions. Thus, cur-
rent research has not reached a consensus on standards for UAV power consumption
which is why existing models do not reflect UAV operations very accurately.

5. It is observed that different models use a different set of parameters for the power
consumption modeling. Although different models are based on different philoso-
phies but there is no metric to characterize the crucial parameters essential for
power consumption modeling. For example model in [7] considers the effect of ver-
tical velocity while the model in [13] does not consider the effect of vertical velocity
whereas the model in [9] does not consider velocity at all. The discrepancies in
power models maybe because of the lack of essential parameters in modeling. [7]
considers a plethora of parameters initially but while deriving the power model,
multiple parameters are lumped as a single variable which takes away the essence
of considering multiple parameters at the first place.

6. None of the power consumption models that are derived from aerodynamic princi-
ples consider acceleration, either vertical or horizontal acceleration as a parameter
for power consumption modeling. On the contrary, the UAV is subjected to changes
in acceleration at various instants of the flight path like take-off/landing, undertak-
ing turns etc. Such instances involve a change in velocity which introduces a change
in acceleration. The velocity is considered static in most models due to a lack of
means in obtaining the velocity in real-time [7] or due to oversimplification where
leveled flights are considered as straight-line paths with constant velocities. In fact,
some models do not consider the role of velocity at all [9].

2.4 Research Plan

2.4.1 Dynamic Power modeling using rotor speed

We are interested in deriving a power consumption model for an UAV. Using that
model we wish to calculate the endurance (flight time or range) of that UAV and per-
form optimal path planning for a given operation. The power model should be applicable
both online, where power will be calculated instantaneously as the UAV traverses with
manual controls or offline, where given an objective, (say A to B problem in xyz plane
with a predefined trajectory) one can use that model and estimate the energy that will
be consumed when the UAV is subjected to travel.

We propose a dynamic power consumption model where given a flight path, one can es-
timate the power consumption profile for that path and integrate it to obtain the energy
consumption. The model should also be able to calculate the additional power require-
ments in presence of external disturbances(say wind) when the UAV tries to maintain its
flight path despite the disturbances.
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• Prelimenaries

Figure 7: Quadrotor notation showing the four rotors, their thrust vectors and directions
of rotation.

A quadrotor model is shown in fig 7. The body coordinate frame B̃ has its z-
axis downward following the aerospace convention. The rotors consists of electric
motors and are controlled by electronic speed controllers. The UAV generates thrust
using these rotors which are fitted with propellers. The vertical component of this
thrust which is known as lift balances the weight of the UAV while the horizontal
component counteracts the drag and helps in translational motion. The parameters
that affect thrust are :-
Fixed

1. No. of blades in a single propeller

2. Drag coefficient of blade

3. Blade chord length

4. Angle of attack of propeller blade

5. Propeller blade area

Variable

1. Drone Design

(a) Drone weight (fixed with fixed battery)
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(b) Payload weight

2. Environment

(a) Wind velocity

(b) Wind incident angle

(c) Air density

(d) Gravity

Note - For wind(external disturbance), the UAV needs to lean against the
wind with some roll, pitch and yaw angle depending upon the wind incident
angle and prevent it from being deviated from its path/position. Some wind
incident angle might also aid in translational motion.

3. Drone dynamics

(a) Climb/Decend (Vertical motion) - All propellers produce same thrust.
Climb/sink rate (vertical velocity) decides the required thrust profile.

(b) Hover - All propellers produce same thrust.

(c) Roll - Right side and left side propellers produce unequal thrust produc-
ing a rolling torque. Roll angle decides the required thrust in respective
propellers.

(d) Pitch - Front and rear propellers produce unequal thrust producig a pitch-
ing torque. Pitch angle decides the required thrust in respective propellers.

(e) Yaw - Clockwise and counter-clockwise spinning propellers produce un-
equal torques resulting a yaw torque. Yaw angle decides the required
thrust in respective propellers.

(f) Cruise (Horizontal motion) - Combination of pitch and hover. The thrusts
are unequal due to pitch. Due to pitch angle(θp) the vertical component
of thrust is Tcos(θp) and as a result T required is higher than hover. Also,
horizontal velocity depends on the pitch angle. See fig. 8
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Figure 8: Horizontal motion of an UAV

In 3(c), 3(d) and 3(e) the total thrust produced by the propellers is constant
and is equal to the gross weight of the UAV. In 3(f), Tcos(θp) is equal to the
gross weight of the UAV.
k The phenomenon of Translational lift might lower T during cruise.

• Drone dynamics with Thrust and angular velocity of rotors
Ideally,

Thrust T = bw2 (37)

where, w is the angular velocity in number of revolutions per minute(RPM) of the
propeller/rotor and b depends upon the fixed parameters 1− 5 and 2(c).

The translational dynamics of the vehicle in world coordinates is given by New-
ton’s second law

mv̇ =

 0
0
mg

−R 0
B

0
0
T

−Bv (38)

where,

– v = velocity of the vehicle’s center of mass in world reference frame

– m = total mass of the UAV

– B = aerodynamic friction

– R 0
B = rotation matrix from vehicle frame to world coordinate frame
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Pairwise differences in rotor thrusts cause the vehicle to rotate. The torque about
the vehicle’s x-axis, the rolling torque, is generated by the moments

τx = d(T4 − T2) (39)

where d is the distance from the rotor axis to the center of mass. We can write this
in terms of rotor speeds by substituting eq(37)

τx = db(w2
4 − w2

2) (40)

Similarly, the torque about the vehicle’s y-axis, the pitching torque, is given by

τy = db(w2
1 − w2

3) (41)

The torque applied to each propeller by the motor is opposed by aerodynamic drag
given by

Qi = cw2
i and i ∈ {1, 2, 3, 4} (42)

c depends on the same factors as b.
This torque exerts a reaction torque on the airframe which acts to rotate the air-
frame in the opposite direction to its rotation. The reaction torque about the z-axis
is

τz = Q1 −Q2 +Q3 −Q4

= c(w2
1 − w2

2 + w2
3 − w2

4) (43)

So, a yaw torque is generated simply by appropriate coordinated control of all four
rotor speeds.
The total torque applied to the airframe according to eq(40), eq(41) and eq(43) is
τ = (τx, τy, τz)

T .
The rotational acceleration is given by Euler’s equation of motion

Jẇ = −w × Jw + τ (44)

where J is the 3×3 inertia matrix of the UAV and w is the angular velocity vector.
The motion of the quadrotor is obtained by integrating the forward dynamics equa-
tions eq(38) and eq(44) where the forces and moments on the airframe are functions
of rotor speeds.

[
T
τ

]
=


−b −b −b −b
0 −db 0 −db
db 0 −db 0
c −c c −c



w2

1

w2
2

w2
3

w2
4

 = A


w2

1

w2
2

w2
3

w2
4

 (45)

The matrix A is constant and full rank if b, c, d > 0 and we can obtain the required
rotor speeds as 

w2
1

w2
2

w2
3

w2
4

 = A−1


T
τx
τy
τz

 (46)
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• Control architecture for translating forward flight to rotor speeds
Here, a PID control architecture is used to describe the control scheme on the UAV
for translational motion. This architecture is based on the work done by Peter
Corke[16]
Altitude is controlled by a proportional-derivative controller

Tz = Kp(z
∗ − z#) +Kd(ż

∗ − ż#) + T0 (47)

T0 = mg is the weight of the vehicle. z∗ and z# are the desired and actual altitudes
respectively. eq(37) and eq(47) determine the average rotor speed.
For pitch and x-translational motion, a proportional and derivative controller to
compute the required pitching torque on the airframe based on the error between
desired and actual pitch angle

τ ∗y = Kτ,p(θ
∗
p − θ#

p ) +Kτ,d(θ̇p
∗ − θ̇p

#
) (48)

where, Kτ,p and Kτ,d are controller gains, θ∗p and θ#
p are the desired and actual pitch

angles respectively.
Consider a coordinate frame B̃ attached to the vehicle and with the same origin
as B but with its x and y axes in the horizontal plane and parallel to the ground.
The thrust vector is parallel to the z-axis of frame B and pitching the nose down,
rotating about the y-axis by θp, generates a force

B̃f = Ry(θp).

0
0
T

 =

Tsin(θp)
0

Tcos(θp)


The component B̃fx accelerates the vehicle in the B̃x-direction, and we have assumed
that θp is small.

B̃fx = Tsin(θp) ≈ Tθp (49)

We can control the velocity in this direction with a proportional control law

B̃fx
∗ = m×Kf (

B̃vx
∗ − B̃vx

#) (50)

where Kf is the controller gain, B̃vx
∗, B̃vx

# are the desired and actual velocities in
world reference frame obtained from Bvx which is in body frame estimated by an
inertial navigation system.
Combining eq(49) and eq(50), we obtain the desired pitch angle required to achieve
the desired forward velocity.

θ∗p ≈
m

T
Kf (

B̃vx
∗ − B̃vx

#) (51)

Using eq(48) we compute the required pitching torque, and then using eq(46) the
required rotor speeds.
If the position of the vehicle in the xy-plane of the world frame is p ∈ R2 then the
desired velocity is given by the proportional control law based on the error between
the desired and actual position.

0v∗ = Kp(
0p∗ − 0p#) (52)
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The desired velocity in the xy-plane of B̃ is

B̃v = 0RB̃(θy).
0v, R ∈ SO(2) (53)

which is a function of yaw angle θy[
B̃vx
B̃vy

]
=

[
cos(θy) −sin(θy)
sin(θy) cos(θy)

] [
vx
vy

]
(54)

To summarize, we have the desired position of the quadrotor in world coordinates.
The position error is rotated from the world frame to the body frame and becomes
the desired velocity. The velocity controller implements eq(51) and its equiva-
lent (if position of the vehicle is in the xy plane) for the roll axis and outputs
the desired pitch and roll angles of the quadrotor. The attitude controller is a
proportional-derivative controller that determines the appropriate pitch and roll
torques to achieve these angles based on feedback of current attitude and attitude
rate. The yaw control block determines the error in heading angle and implements
a proportional-derivative controller to compute the required yaw torque. Then from
these three torques and Tz as calculated abouve, we can obtain the required rotor
speeds using eq(46). If instead of desired position we have a given trajectory which
the UAV is supposed to follow, we can formulate the trajectory as a sequence of
coordinates and apply the above philosophy to derive the required roll, pitch, yaw
torque and thrust dynamics with respect to time. From that we derive the rotor
speed profiles.

• Power Calculation
The shaft power for a DC motor drive is given by

P =
2π × w × Tor

60
(55)

where w is the angular speed of the motor in RPM and Tor is the torque in N −m.
Power P is in Watts. According to Disk actuator theory[14], the torque produced
by a rotor is given by

Tor =
1

2
TqρAw

2R3 (56)

where Tq is the torque coefficient which is fixed for a given propeller.ρ is air density,
A is propeller disk area and R is blade chord length.

From eq(55) and eq(56), P ∝ w3. Here ρ is assumed constant for an operation
while remaining parameters are constant by mechanical construction of the UAV.
So, we map every dynamics and every parameter that affects thrust to a single
variable for obtaining the power consumption profile of an UAV.

27



Figure 9: Snapshot of the power calculation philosophy

In an ideal case, with a given trajectory or hover action, we can plan the set of
manuevers (3(a) to 3(f)) that will be required to execute that trajectory and obtain
the thrust profiles that will be required in the propellers. From the thrust profiles,
we can obtain the w(RPM) profiles and calculate the dynamic power that will be
consumed by each propeller. Using battery efficiency and charging efficiency we
can estimate the power that will be consumed in an operation.

For a non-ideal situation with wind at play, we plan to employ a sensing mech-
anism as shown in fig 10 (R1, R2, R3, R4) represents the sensing regions). Such
sensors will be able to detect wind velocity and wind incident angle on the UAV
body. Based on the applicable wind, we can obtain the required thrust to coun-
teract that wind. From that thrust comes the required estimates of roll, pitch and
yaw angle and from these estimates, we can obtain the w(RPM) profiles and then
derive the dynamic power that will be applicable in counterating wind.
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Figure 10: An UAV faced by wind from North East

• Simulations using MATLAB
Based on the above philosophy, we perform simulations of an UAV motion using
MATLAB. We give commands to a UAV in terms of cartesian coordinates and
then obtain the angular speeds of all four rotors. The simulations are performed
using a quadcopter model avaiabe in the Robotics Toolbox (RTB10.x) of MATLAB
R2021a. This toolbox is designed by Peter Corke. The experiments were carried
out on an Intel Core i5 computer at 3.50 GHz with 8 GB RAM using Windows 10
operating system.

Here, the UAV is given coordinates as commands in the Cartesian cooordinate
system. The UAV is initially at (0,0,0). w(RPM) with respect to time is plotted
for all four rotors.

– Simulation 1 :
Initial position = (0,0,0), Target Position = (0,0,2)
Simulation time = 5 seconds.
The RPM profiles are shown in fig.11
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Figure 11: Simulation 1

– Simulation 2 :
Initial position = (0,0,0), Target Position = (4,0,2)
Simulation time = 5 seconds
The RPM profiles are shown in fig.12

Figure 12: Simulation 2

– Simulation 3 :
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Initial position = (0,0,0), Target Position = (4,4,2)
Simulation time = 5 seconds
The RPM profiles are shown in fig.13

Figure 13: Simulation 3

– Simulation 4 :
Initial position = (0,0,0), Target Position = (0,0,1) at time t = 0s, (0,0,2) at
time t = 5s, (0,0,3) at time t = 10s
Simulation time = 20 seconds
The RPM profiles are shown in fig.14
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Figure 14: Simulation 4

• Inference - As seen from above figures, the angular speeds of the rotors show sub-
stantial variations when they are commanded for various coordinates. Using these
profiles we intend to compute the dynamic power. The results from simulations
need to be validated against a physical setup where we intend to calculate the
practical power from voltage and current measurments of the rotors.
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3 Path Planning

3.1 What is path planning

Path planning refers to the generation of a set of waypoints between an initial loca-
tion and a desired destination with an optimal or near-optimal performance under specific
constraint conditions. Path planning is performed to ensure the following attributes [20]
:

• Stealth: Stealth means safety. The topography of an area through which the UAV
travels may include buildings, mountains, forest cover etc, so it is essential that it
doesnot crash against any such objects. Moreover, in military applications, UAVs
have to ensure that they stay away from the realm of enemy radars or evade when
there is a pursuit by an enemy UAV.

• Physical Feasibility: The physical feasibility of a route refers to the physical limi-
tations from the use of UAVs. They include the following constraints.

– Flying time

– Payload weight

– Communication range

– Maximum translational velocity

– Maximum climb/sink rate

– On-board computational power

• Performance of Mission: Each flight has its special mission. This depends on the
application. For example in applications like emergency responsiveness, the opera-
tor would want to reduce the time of operation while in parcel delivery, the operator
would like to reduce the cost of operation. Certain missions require multiple trips
by the same UAV to improve the efficiency of operation.

• Cooperation: The path planning algorithm must be compatible with the coopera-
tive nature envisioned for the use of UAVs. A flight mission might involve multiple
UAVs and in such an applications, the ability to coordinate with the routes flown
by other UAVs become vital for a smooth and efficient operation.

• Real-Time Implementation: The flight environments of the UAVs are usually con-
stantly changing. Therefore, the route-planning algorithm must be able to adapt
to those changes and at the same time be computationally efficient.

3.2 Literature Review on path planning

The main objective of UAV path planning is to design flight paths with minimum
comprehensive costs and maximum safety. The major dimensions of UAV path planning
in literature are based on aspects of algorithm (deterministic/non-deterministic), time-
domain (online/offline), and space domain (2D/3D)

• Dorling et. al in [8] have solved Vehicle Routing Problems as Multi-trip Vehicle
Routing Problem (MTVRP) while considering battery and payload weight as pa-
rameters in the energy consumption modeling that governs the cost of a trip. Two
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MTVRPs are solved, one that minimizes the time of an operation given a budget
and other that minimizes the cost of an operation given a time limit. The authors
have derived their own energy consumption model and claimed that the energy
consumed is irrespective of whether the drone is hovering or flying with constant
velocity. They have also concluded that energy consumption varies linearly with
weight. The authors have derived MILPs for the VRP and have also used SA ap-
proach to obtain suboptimal solutions when the region of application is very large.
Given an operation, solutions to the VRP are the number of UAVs, the routes they
fly, battery weight and payload weight. It is shown that minimum time has an
inverse exponential relationship with minimum cost.

• Authors of [21] solve a multi-modal path planning problem for UAVs under a low
altitude dynamic urban environment. A Multi-objective path planning (MOPP)
framework concerning travel time and safety level has been proposed. To this
end, a static SIM is offline established to indicate the main static obstacles in the
geography map, and a dynamic SIM is online constructed to capture unexpected
obstacles that are not available in the geography map during flying. Then a joint
offline and online search method has been developed to address the MOPP problem.
The performance of the MOPP is evaluated using metrics consisting of the average
and maximum runtime of the program, the UAV trajectory, travel time, and the
total safety index. A travel time and safety index tradeoff curve is provided which
can provide the users to select a Pareto optimal path according to their preferences.
The perception range used for dynamic SIM decides the travel time in case of online
replanning but that is restricted to the sensing infrastructure that is available during
practical implementation.

• A Multi-Step A*(MSA*) search algorithm is proposed in [22] for four-dimensional
multi-objective path panning of an UAV in a large dynamic environment. Generally,
the path planning algorithms outputs a sequence of linear tracks in any grid-based
motion planning scheme where track angle and velocity are restricted by assump-
tions. Here in this work, MSA* employs a variable successor operator and finds
a cost-optimal path using variable length, angle and velocity trajectory segments.
The multiple objectives addressed are safety, flying rules, delivery time and fuel
consumption. The constraints considered in flight are cruise velocity, altitude, rate
of climb, turn radius, vehicle separation, storm cell avoidance and population risk
criterion. It is concluded that, on average, the computational time of MSA* is four
times better than A* while the total cost is only marginally improved. It has been
also shown that MSA* is suitable for online replanning as the average computation
time is a fraction of the minimum track traversal time.

• Roberge et. al in [23] have used and compared two evolutionary algorithms for
solving the real-time path planning problem of an UAV in a complex 3D environ-
ment. They have proposed a comprehensive cost function that includes optimal
criteria like the length of the path, altitude and danger zones and feasible criteria
like power availability, and collision avoidance. The cost function can easily be
integrated with any other non-deterministic algorithm. They have concluded that
GA produces superior path planning results than PSO. Later they have developed
a parallel computing paradigm between these two algorithms in a single program
and improved its execution time. It is classified as a multiple-deme parallel GA
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where sub-populations evolve independently while allowing some level of migration
between the demes.

• Sundar and Rathinam in [24] have proposed an algorithm for obtaining a sequence
of routes for an UAV in the presence of multiple refueling depots. The task of
the UAV is to visit a set of target points ideally for a surveillance application in a
region with the flexibility of using multiple refueling stations such that the overall
fuel consumption by the UAV is minimized. The UAV in this context is modeled
as a Dubins’ vehicle with a minimum turning radius and an optimal heading is
considered at each target location. This combinatorial difficulty is handled using
an approximation algorithm with some added heuristic layers and it is seen that
solutions with costs within 1.4% of the optimum are obtained relatively quickly.
It is also shown that when heuristics are added, the average deviation of the sub-
optimality of feasible solutions are comparatively lower as the number of targets
increase.

We have collatd the results and have elaborated on types of path planning in the following
section.

3.3 Types of path planning

3.3.1 Offline path planning

Offline path planning is also known as global path planning. Under this situation,
the environment is static, and its global information is known a priori in the control
design. This approach is expensive in implementation and relatively well studied in the
existing literature [25].

Offline path planning scenerio The following offline path planning scenerio is based
on [8]

Problem Statement Given a geographical region with locations having specific
demands, a set of UAVs needs to be deployed to fulfil those demands with certain ob-
jectives. The UAVs depart from a central depot which also act as a charging/battery
swapping station and an UAV can be reused for multiple trips to increase the efficiency
of the operation.

Objectives

1. Minimize the time of operation given a budget B (Emergency responsiveness)

2. Minimize the cost of operation given a time T (Parcel delivery logistics)

Solution Here a Path Planning Algorithm (PPA) is employed for this Path Plan-
ning Problem (PPP) which will satisfy the above objectives given a set of constraints (as
discussed below) and obtain optimal/quasi-optimal routes for an effective operation. The
solution to this PPP is in the form of the number of UAVs required, the routes that they
fly and the battery capacity required for each route.
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Path A path is defined as a route that starts and ends at the depot. The illustra-
tion given in figure 15 depicts two UAVs flying three routes. Whilst UAV 2 flies a single
route, visiting locations 4–7, UAV 1 flies two routes. During its first route, UAV 1 visits
locations 1–3, then returns to the depot to swap batteries and pick up more packages.
After the swap, it flies its second route, visiting locations 8–10.

Figure 15: Example showing two flying three routes

The path planning algorithm optimize the routes flown by a set of UAVs in order to visit
the set of locations N . Location 0 is the depot. Each location i ∈ N0, where the set
N0 = N\0, has a demand Di which represents the weight of the package in kg that will
be delivered to location i. Every location, except for the depot, is visited only once by
an UAV, and τ s is spent at each location to descend, deliver the package, and ascend.

Assumptions

• UAVs fly between locations with constant velocity

• Impact of weather on flight is neglected

• Demand in each location can be fully satisfied by a single UAV

• No recharging during trips

• There exists a single depot

• There exist battery packs with different capacities

Energy Consumption Model A energy consumption model has to be chosen
such that energy consumed by an UAV during a trip can be captured as a function of
battery and payload weight

36



Decision variables and constraints This section discusses the decision vari-
ables, constants, and constraints that are applicable in this PPP. The constraints can
be put into categories related to limiting each UAV’s route, reusability, timing, energy
consumption, capacity, as well as the total cost of making deliveries. Decision variables
and constants are described below their corresponding constraints. It is ensured that
every route is valid through ∑

j∈N
j 6=i

xij = 1 ∀i ∈ N0 (57)

∑
j∈N
j 6=i

xij −
∑
j∈N
j 6=i

xji = 0 ∀i ∈ N0 (58)

To create a routing map for the UAVs, the edge variables xij is used, where xij = 1 if the
UAV moves from location i to j, and xij = 0 otherwise. Constraint eq(57) guarantees
that every location, except for the depot, is visited exactly once by an UAV, while eq(58)
ensures that an UAV arriving at location i also departs from location i.

The reusability constraints ∑
j∈N0

σij ≤ xi0 ∀i ∈ N0 (59)∑
j∈N0

σji ≤ x0i ∀i ∈ N0 (60)∑
j∈N0

x0i −
∑

(i,j)∈N0XN0

σij ≤M (61)

determine whether or not an UAV can be reused after returning to the depot. The reuse
decision variable is σij, where σij = 1 if the UAV leaves location i for the depot, gains a
fresh battery and set of packages, then flies to location j to begin a new route; otherwise
σij = 0. Constraint eq(59) implies that if an UAV returns to the depot from location i,
it is available for use again to fly to another location. Constraint eq(60) ensures that if a
reused UAV leaves from the depot to location i, it arrived previously from another loca-
tion. The number of UAVs that can be purchased, and can therefore fly simultaneously,
is limited to M by eq(61).

Applying demand constraints∑
j∈N

yji −
∑
j∈N

yij = Di ∀i ∈ N0 and i 6= j (62)

yij ≤ Kxij ∀(i, j) ∈ NXN, i 6= j (63)

to ensure that each location receives what it demands. The payload weight between loca-
tions i and j is represented by the decision variable yij in kg. The constant K is a large
value representing an upper bound for constraints. Constraint eq(62) makes sure that
the payload weight when leaving location i is Di kg less than upon arrival. Constraint
eq(63) sets the payload weight of each edge without a vehicle to 0 kg.
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Enforce timing is calculated through

ti − tj + τ + dij/v ≤ K(1− xij) ∀(i, j) ∈ NXN0 and i 6= j (64)

ti − ai + τ + di0/v ≤ K(1− xi0) ∀i ∈ N0 (65)

ai − tj + τ + d0j/v ≤ K(1− σij) ∀(i, j) ∈ N0XN0 and i 6= j (66)

ti ≤ l∀i ∈ N0 (67)

l ≤ T (68)

A location i ∈ N0 is visited by an UAV at time ti in seconds. The time in seconds that
an UAV returns to the depot directly after leaving location i is ai. Note that ai = 0 if
xi0 = 0, and ai > 0 otherwise. The overall delivery time l is the time in seconds when
all UAVs have completed their deliveries. Constant values related to timing include the
speed v in m/s of the UAVs in the air, the distance dij in m between locations i and j, as
well as the time τ in seconds spent at each location descending, delivering a package, and
ascending. UAVs must complete their deliveries by the delivery time limit T in seconds.
Constraint eq(64) keeps track of the time ti that each location i is visited by an UAV.
Similarly, eq(65) keeps track of the time ai that an UAV arrives at the depot from loca-
tion i. Constraint eq(66) ensures that times are correct for UAVs that are reused after
returning to the depot. The overall delivery time l is set by eq(67), and the delivery time
limit T is guaranteed by eq(68).

Carrying capacity is restricted through

qij + yij ≤ Qxij (i, j) ∈ NXN and i 6= j (69)

zi/ζ − ζi ≤ K(1− xi0) ∀i ∈ N0 (70)

ζi − ζj ≤ K(1− xji)∀(i, j) ∈ N0XN0 and i 6= j (71)

qij ≥ ζj −K(1− xij)∀(i, j) ∈ N0XN0 and i 6= j (72)

qi0 ≥ ζi −K(1− xi0) ∀i ∈ N0 (73)

The battery weight between locations i and j is represented by the decision variable qij
in kg. To assist with optimizing the battery weight, the decision variable ζi tracks the
battery weight in kg at location i. The energy consumed from an UAV’s battery by the
time it arrives at the depot directly after leaving location i is zi kJ. Note that zi = 0 if
xi0 = 0, while zi > 0 otherwise. The constant ζ is the energy density of the battery in
kJ/kg. The capacity of the UAV between locations i and j is restricted to Q kg by eq(69).
The weight ζi of the battery at each location i is set by eq(70) and eq(71): constraint
eq(70) finds ζi for the locations visited just before the depot, while eq(71) sets ζi = ζj
if the UAV flies directly from location i to location j. The weight qij of the battery
between locations i and j is required by eq(69) and is found through constraints eq(72)
and eq(73). Constraint eq(72) sets qij ≥ ζj if the UAV flies between locations i and j,
while eq(73) sets qi0 ≥ ζi if the UAV flies from location i to the depot.

Energy restrictions are enforced by

fi − fj + p(mij)(dij/v + τ) ≤ K(1− xij) ∀(i, j) ∈ NXN0 and i 6= j (74)

fi − zi + p(mi0)(di0/v + τ) ≤ K(1− xi0) ∀i ∈ N0 and i 6= j (75)

zi ≤ Kxi0 (76)
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The decision variable fi represents the energy in kJ consumed from an UAV’s current
battery upon reaching location i ∈ N0. The power p(m) in kW consumed by an UAV
with a battery and payload weight of m kg is estimated from the power consumption
model. The weight in kg of the UAV’s battery and payload between locations i and j is
mij = qij + yij. Constraint eq(74) forces fi to equal the total energy consumed along the
route up to location i. Constraint eq(75) makes zi equal to the energy consumed flying
the entire route that ends at location i. To ensure that zi = 0 if the UAV does not fly
from location i to the depot, and that zi > 0 otherwise, eq(76) is included. Note that
constraints eq(74) and eq(75) are linear because the power p(mij) is a linear approxima-
tion.

Costs are kept in line with the budget B through

c = F
∑
i∈N0

x0i − F
∑

(i,j)∈N0XN0

σij + ε
∑
i∈N0

zi (77)

c ≤ B (78)

The cost of an UAV is F financial units, while the budget is limited to B financial units.
The constant ε is the cost in financial units of a kJ of energy. Constraint eq(77) calculates
the total cost c of performing the deliveries. The leftmost term of eq(77) represents the
cost of UAVs assuming that each route requires a new UAV, while the second term
represents the savings provided by reusing UAVs; together they equal the total cost of
UAVs. The rightmost term is the cost of energy. The total cost is restricted to the
budget by eq(78). The constraints in this section assume each UAV’s battery is sized to
provide exactly enough energy for the upcoming route. The constraints can, however,
be adjusted to find the optimum combination of discrete battery sizes. Assume a set of
battery types B̃ exists, where each battery type j ∈ B̃ has energy Ej in kJ, a cost Cj
in financial units, a weight wj in kg, and a decision variable bji that is 1 if battery type
j is in the UAV at location i with zi ≥ 0, and 0 otherwise. In eq(70), the continuous
battery weight zi/ε at location i can be replaced with the weight of the chosen batteries∑

j∈B̃ wjbji. In eq(77), the continuous total cost ε
∑

i∈N0
zi of batteries can be replaced

with the total cost of the chosen batteries
∑

i∈N0

∑
j∈B̃ Cjbji. To ensure that the chosen

batteries’ energy is adequate, constraint
∑

j∈B̃ EjBji ≥ zi ∀i ∈ N0 can be added.

Problem Formulation

• The problem for minimising the cost of operation can be expressed as

min c (79)

s.t eq(57)− eq(78)

3.3.2 Online path planning

Online path planning also known as local path planning is a scheme where the path
is generated by taking data from the sensors/cooperative agents during the movement
of the UAV. Therefore, an UAV can generate a new path in response to a new envi-
ronment/objective. This method is more complicated in design but more applicable in
practice. While the UAV is in flight the following scenerios may arrise which then need
an online path planning
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(a) A mission with deterministic (black) and
non-deterministic(grey) obstacles

(b) UAV path planning

Figure 16: An online path planning scenerio

• The UAV comes in proximity of an unforseen object/topography

• The UAV gets dissuaded from its path due to unknown environmental factors

• In a cooperative operation, the objective of an UAV changes

• There is an updation of global information map

Online path planning scenerio The following offline path planning scenerio is based
on [21]

Problem Statement Given a low altitude dynamic urban environment with a
static safety index map, an UAV needs to make its way through the terrain from an origin
to a destination autonomously with certain objectives

Objectives

• There is no collision with an unforseen obstacle/terrain

• The travel time is minimised

Solution To this end we need to solve the static preplannig problem offline (from
the static safety index map) and a dynamic replanning problem to attend to the unforseen
obstacles. The online path planner takes into account the sensing mechanism of the
UAV and reroutes the trajectories considering a planning horizon whenever an unknown
environment triggers the sensors. The solution is in the form of a pareto optimal path
that takes care of the objectives as mentioned above.
For this scenerio, few notions are discussed below

• Position Uncertainity Model
It is assumed that there is uncertainity in the position and navigation system of the
UAV, so a position uncertainity model is described to avoid any discrepency in ob-
stacle detection. A bivariate Gaussian model is utilized to simulate the uncertainity
in 2-D space. The UAV position density function p can be expressed as

p(xc, yc, σx, σy) =
1

2πσxσy
e
−
(

(x−xc)2

2(σx)2
+

(y−yc)2

2(σy)2

)
(80)
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Figure 17: Position uncertainity model Figure 18: UAV risk area

where σx and σy are standard deviatins, sc = (xc, yc) is the coordinate of the center
point of the position uncertainity model depicted in figure17. Given a normal
distribution, P (µ− 3σ < X ≤ µ+ 3σ) = 99.7%. Similarly this 3σ principle is used
to bind the above mentioned probability circle.

• Risk probability
The UAV risk probability refers to the probability that the UAV will hit obstacles
due to the position error, which can be denoted by

Pr(xc, yc) =

∫
φ∈Φ

p(xc, yc, σx, σy)dφ (81)

where Φ represents the risk area as shown in figure18.
Alternatively, the safety probability of the UAV located at the center point is cal-
culated using the form

P̃ r(xc, yc) = 1− Pr(xc, yc) (82)

• Static Safety Index Map
Given a space graph G = (N,A, c), the static SIM describes the UAV flight safety
index at an arbitrary point sc in the space graph, which can be denoted by

I(sc) = −10 log10(P̃ r(xc, yc)) (83)

It is worth to note that the safety index of a path is the sum of the safety indices of
all points on the path, and a greater path safety index indicates a more dangerous
path. In realization, the safety indices of the points far away from an obstacle
are small, e.g., close to zero in general. Only those of the points near an obstacle
contribute to the safety index of a path. Hence, in order to reduce the computational
complexity, one may only calculate the probability that a UAV collides with each
obstacle on the path instead and obtain the corresponding safety index, which is in
fact the summation of the safety indices of all the points near the obstacle.

• Dynamic Safety Index Map
Here a dynamic SIM is constructed to depict the safe and hazardous regions of
unexpected obstacles.

– Perception Range: UAVs need to detect surroundings in performing missions
to perceive the surrounding information. Denote R by the sensing distance of
onboard sensing sensors; thus, one can define the perceptual range of a UAV
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as a circle centered at the UAV, and R is the radius in 2-D space. In other
words, the perceptual range of a UAV can take the form

(xc − x)2 + (yc − y)2 = R (84)

where, (x, y) is an arbitrary point within the perceptual range. If a UAV de-
tects that obstacles appearing in its perception range are unknown, it will mark
these obstacles as unexpected and call the following mechanism to construct
a dynamic SIM for them.

– Safety Margin: When a UAV finds an unexpected obstacle appearing in its
perception range, one of the obstacle avoidance measures that the UAV can
take is emergency braking, which is associated with the speed of the UAV.
The braking distance is called the “safety margin” (denoted by dsm) in this
paper. Next, the following formation can be utilized to construct the dynamic
SIM of unanticipated obstacles:

I(sc) =

{
+ inf dc ≤ dsm

0 else
(85)

where, dc represents the vertical distance between the UAV and the unexpected
obstacle.

Path Planning Formulation Here, a multiobjective optimization problem is
formulated with two objectives: 1) travel time and 2) safety. The solution of this prob-
lem is to find an optimal path p between the source point and target point in a graph
G(N,A, c). Each arc i in A has two non-negtive costs denoted by ci,1 and ci,2 representing
the travel time and safety, respectively. Let gj(p) be the total cost of the whole arcs in
a path p for the jth objective. Let g(p) = (g1(p), g2(p)) be the cost vector for a path p.
Therefore, when compared with any other path q the “optimal” path p should meet with
the following conditions:

gj(p) ≤ gj(q) ∀j ∈ {1,2} and ∃i ∈ {1,2}, gi(p) < gi(q) (86)

Solutions that are nondominated by any other solutions are the Pareto optimal solutions
(denoted by a Pareto set P in this paper). Path p is a Pareto optimal path of the Pareto
optimal set, which has the minimal total cost W

W = min
p∈P

αg1(p) + (1− α)g2(p) (87)

3.4 Research Gap

• On a multi-objective path planning scheme, the objective of minimizing energy
consumption is avoided in most cases. The cases that consider energy consump-
tion as an objective are grid-based path planning, where the path is assumed as a
straight line from one point to the other[26]. The energy consumption modeling can
be tested against various types of trajectories and accordingly an optimal/quasi-
optimal trajectory can be calculated that would result in the least energy consump-
tion.
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• To the best of our knowledge, online path planning is not formulated in the literature
when an UAV gets dissuaded from its path due to environmental factors like wind.
Consider a case where a UAV is dissuaded from its preplanned path due to external
stimuli. The path planning algorithm should be able to replan a trajectory from
that instant such that energy is minimized for the rest of the journey.

• To the best of our knowledge, weather data is not taken into consideration during
the path planning of an UAV. In civil aviation, a flight plan is designed based on
the current weather which may include waypoints that are placed according to the
wind directions of the region[27]. Such flight plans aid the flight with minimum fuel
burnt against the flow of wind. Similarly in UAV path planning, wind data can be
considered for an efficient flight.

4 Conclusion

In this research work, we have addressed two aspects of an Unmanned Aerial Vehicle
(UAV), one being the power consumption model that calculates the energy consumed in
a trip and other being path planning which results in efficient trips. We have surveyed
the literature for both these aspects. Then we have made an attempt to derive a dynamic
power consumption model using the angular speeds of rotors. The model however needs
to be defined with proper units. The model also needs to be tested against practical
power consumption using voltage and current measurements on a real UAV setup. The
future prospects of the work is to derive a path planning algorithm which will be applied
using our power consumption model. We aim to address the research gaps as mentioned
above. Finally we wish to apply path planning with minimal energy consumption in a
multi-agent setup.
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